Cytosolic and mitochondrial human branched chain aminotransferase (hBCATc and hBCATm, respectively) play an integral role in brain glutamate metabolism. Regional increased levels of hBCATc in the CA1 and CA4 region of Alzheimer's disease (AD) brain together with increased levels of hBCATm in frontal and temporal cortex of AD brains, suggest a role for these proteins in glutamate excitotoxicity. Glutamate toxicity is a key pathogenic feature of several neurological disorders including epilepsy associated dementia, AD, vascular dementia (VaD) and dementia with Lewy bodies (DLB).
View Article and Find Full Text PDFEpidemiological data associate hypertension with a predisposition to Alzheimer's disease (AD), and a number of postmortem and in vivo studies also demonstrate that hypertension increases amyloid-β (Aβ) pathology. In contrast, anti-hypertensive medications reportedly improve cognition and decrease the risk of AD, while certain classes of anti-hypertensive drugs are associated with decreased AD-related pathology. We investigated the effects of hypertension and anti-hypertensive treatment on Aβ plaque load in postmortem frontal cortex in AD.
View Article and Find Full Text PDFAims: Deposition of amyloid beta (Aβ) in the brain is one of the defining abnormalities of Alzheimer's disease (AD). Phosphorylation of Aβ at serine 8 (pAβ) has been implicated in its aggregation in vitro and pAβ level has been shown to be significantly elevated in AD. We aimed to assess the specificity of pAβ for AD and have investigated associations of pAβ with parenchymal and cerebrovascular accumulation of Aβ, disease progression, angiotensin-converting enzyme activity and APOE genotype.
View Article and Find Full Text PDFFront Aging Neurosci
October 2014
There is increasing evidence that deficient clearance of β-amyloid (Aβ) contributes to its accumulation in late-onset Alzheimer disease (AD). Several Aβ-degrading enzymes, including neprilysin (NEP), endothelin-converting enzyme (ECE), and angiotensin-converting enzyme (ACE) reduce Aβ levels and protect against cognitive impairment in mouse models of AD. In post-mortem human brain tissue we have found that the activity of these Aβ-degrading enzymes rise with age and increases still further in AD, perhaps as a physiological response that helps to minimize the build-up of Aβ.
View Article and Find Full Text PDFBackground: Higher angiotensin-converting enzyme (ACE) activity might increase the risk of Alzheimer's disease by increasing blood pressure, and subsequent development of cerebral small vessel disease (CSVD). Yet, it may also decrease this risk, as it functions to degrade amyloid-β, thereby reducing brain atrophy.
Objective: To examine the cross-sectional associations of serum and cerebrospinal fluid (CSF) ACE protein levels and activity with brain atrophy and CSVD in a memory clinic cohort.
Introduction: Lower angiotensin-converting enzyme (ACE) activity could increase the risk of Alzheimer's disease (AD) as ACE functions to degrade amyloid-β (Aβ). Therefore, we investigated whether ACE protein and activity levels in cerebrospinal fluid (CSF) and serum were associated with CSF Aβ, total tau (tau) and tau phosphorylated at threonine 181 (ptau).
Methods: We included 118 subjects from our memory clinic-based Amsterdam Dementia Cohort (mean age 66 ± 8 years) with subjective memory complaints (n = 40) or AD (n = 78), who did not use antihypertensive drugs.
Little is known about the contributors and physiological responses to white matter hypoperfusion in the human brain. We previously showed the ratio of myelin-associated glycoprotein to proteolipid protein 1 in post-mortem human brain tissue correlates with the degree of ante-mortem ischaemia. In age-matched post-mortem cohorts of Alzheimer's disease (n = 49), vascular dementia (n = 17) and control brains (n = 33) from the South West Dementia Brain Bank (Bristol), we have now examined the relationship between the ratio of myelin-associated glycoprotein to proteolipid protein 1 and several other proteins involved in regulating white matter vascularity and blood flow.
View Article and Find Full Text PDFIntroduction: Hypertension is a modifiable risk factor for Alzheimer's disease (AD) and other dementias. Yet, despite this well-documented association, few of the current strategies to treat AD are directed at this possible target. The renin-aldosterone angiotensin system (RAAS) is a centrally active modifiable pathway that is involved in cerebral blood flow regulation.
View Article and Find Full Text PDFDecreased cerebral blood flow and blood-brain barrier disruption are features of Alzheimer's disease (AD). The plasma kallikrein-kinin system modulates cerebrovascular tone through release of vasoactive bradykinin (BK). Cerebroventricular infusion of Aβ1-40 enhances BK release, suggesting that the activity of this system may be elevated in AD.
View Article and Find Full Text PDFHuman kallikrein-related peptidase 6 (KLK6) is highly expressed in the central nervous system. Although the physiological roles of this serine protease are unknown, in vitro substrates include amyloid precursor protein and components of the extracellular matrix, which are altered in neurological disease, particularly Alzheimer's disease (AD). We have compared KLK6 expression in post-mortem brain tissue in AD, vascular dementia (VaD) and controls.
View Article and Find Full Text PDFAngiotensin-converting enzyme (ACE) has been implicated in Alzheimer's disease (AD): ACE1 variations influence plasma ACE and risk of AD, and ACE is increased in AD brain. We measured frontal ACE level and activity in 89 AD and 51 control brains, and post-mortem CSF from 101 cases and 19 controls. Neuron-specific enolase (NSE) level and Braak stage were used to indicate neuronal preservation and disease progression.
View Article and Find Full Text PDF