Fish embryos can bioaccumulate and are particularly sensitive to a wide range of contaminants, which makes them suitable sentinels for environmental biomonitoring. However, fish embryos are very rarely utilized in environmental monitoring surveys, possibly due to their fragility and seasonality. In the present work, we assessed the applicability of caged lumpfish (Cyclopterus lumpus) eggs for in situ biomonitoring of exposure and effects of organic contaminants focusing on polyaromatic hydrocarbons and phenolic compounds.
View Article and Find Full Text PDFMicroscopic imaging and morphometric measurement of fish embryos and larvae is essential in environmental monitoring of fish populations and to evaluate larvae development in aquaculture. Traditional microscopy methods require time-consuming, repetitive work by human experts. We present a method for fast imaging and analysis of millimetre-scale ichthyoplankton suspended in seawater.
View Article and Find Full Text PDF3,4-dichloroaniline (3,4-DCA) is one of the most widely produced anilines world-wide, used in plastic packaging, fabrics, pharmaceuticals, pesticides, dyes and paints as well as being a degradation product of several pesticides. 3,4-DCA has been detected in freshwater, brackish and marine environments. Although freshwater toxicity thresholds exist, very little toxicological information is available on marine and cold-water species.
View Article and Find Full Text PDFWhen an oil field ages and the pressure in the reservoir decreases, or for oil fields with heavy oil, there may be a need for enhanced oil recovery (EOR) technologies. Polymer injection is a water-based EOR method where the viscosity of the water injected for pressure support is increased by mixing with a high concentration polymer solution. In this project, the potential fate of a synthetic anionic polyacrylamide (APAM) in seawater was investigated, since these EOR polymers may enter the marine environment with the produced water (PW).
View Article and Find Full Text PDFThe degree to which droplet shedding (tip-streaming) can modify the size of rising oil droplets has been a topic of growing interest in relation to subsea dispersant injection. We present an experimental and numerical approach predicting oil droplet shedding, covering a wide range of viscosities and interfacial tensions. Shedding was observed within a specific range of droplet sizes when the oil viscosity is sufficiently high and the IFT is sufficiently low.
View Article and Find Full Text PDFBoth oil droplets and gas bubbles have simultaneously been quantified in laboratory experiments that simulate deep-water subsea releases of both live oil (saturated with gas) and additional natural gas under high pressure. These data have been used to calculate particle size distributions (50-5000 μm) for both oil and gas. The experiments showed no significant difference in oil droplet sizes versus pressure (from 5 m to 1750 m) for experiments with live oil.
View Article and Find Full Text PDFLimited experimental and field data are available describing oil droplet formation from subsea releases at high pressure. There are also analytical challenges quantifying oil droplets over a wide size and concentrations range at high pressure. This study quantified oil droplets released from an orifice in seawater at low and high pressure (5 m and 1750 m depth).
View Article and Find Full Text PDF