Publications by authors named "Emir Benca"

Ceramic lattices hold great potential for bone scaffolds to facilitate bone regeneration and integration of native tissue with medical implants. While there have been several studies on additive manufacturing of ceramics and their osseointegrative and osteoconductive properties, there is a lack of a comprehensive examination of their mechanical behavior. Therefore, the aim of this study was to assess the mechanical properties of different additively manufactured ceramic lattice structures under different loading conditions and their overall ability to mimic bone tissue properties.

View Article and Find Full Text PDF

Knowledge of the minimal detectable bone fracture gap is essential in three-dimensional (3D) models, particularly in pre-operative planning of osteosynthesis to avoid overlooking gaps. In this study, defined incisions and bony displacements ranging from 100 to 400 µm were created in diaphyseal radii in 20 paired forearm specimens and verified with light microscopy. The specimens were scanned utilizing different computed tomography (CT) technologies/scanners, specimen positionings, scan protocols, image segmentations, and processing protocols.

View Article and Find Full Text PDF

Purpose: In forensic medicine, maceration is often essential for examining bone surfaces, serving purposes such as identifying cut marks, making geometric measurements, and determining the victim's age. While hot water maceration removes soft tissue effectively, it is known to cause bone surface shrinkage. This raises the question of whether this effect is permanent or if it can be partially reversed through rehydration, considering the presence of soft tissue.

View Article and Find Full Text PDF

The introduction of three-dimensional (3D) printed anatomical models has garnered interest in pre-operative planning, especially in orthopedic and trauma surgery. Identifying potential error sources and quantifying their effect on the model dimensional accuracy are crucial for the applicability and reliability of such models. In this study, twenty radii were extracted from anatomic forearm specimens and subjected to osteotomy to simulate a defined fracture of the distal radius (Colles' fracture).

View Article and Find Full Text PDF

Background: Additively manufactured (AM) anatomical bone models are primarily utilized for training and preoperative planning purposes. As such, they must meet stringent requirements, with dimensional accuracy being of utmost importance. This study aimed to evaluate the precision and accuracy of anatomical bone models manufactured using three different AM technologies: digital light processing (DLP), fused deposition modeling (FDM), and PolyJetting (PJ), built in three different part orientations.

View Article and Find Full Text PDF

Lateral wall thickness is a known predictor for postoperative stability of trochanteric femoral fractures and occurrence of secondary lateral wall fractures. Currently, the AO/OTA classification relies on the absolute lateral wall thickness (aLWT) to distinguish between stable A1.3 and unstable A2.

View Article and Find Full Text PDF

: The treatment of transfemoral amputees using osseointegrated implants for prosthetic anchorage requires accurate implant positioning when using threaded bone-anchoring implants due to the curvature of the femur and the risk of cortical penetration in misaligned implants. This study investigated the accuracy and precision in implant positioning using additively manufactured case-specific positioning guides. : The geometry and density distribution of twenty anatomic specimens of human femora were assessed in quantitative computed tomography (QCT) scanning.

View Article and Find Full Text PDF

The purpose of this study was to compare the biomechanical stability, especially graft slippage of an allograft screw and a conventional interference screw for tibial implant fixation in ACL reconstruction. Twenty-four paired human proximal tibia specimens underwent ACL reconstruction, with the graft in one specimen of each pair fixed using the allograft screw and the other using the conventional interference screw. Specimens were subjected to cyclic tensile loading until failure.

View Article and Find Full Text PDF

Study Design: Laboratory study.

Objective: This study aimed to investigate the biomechanical competence and fracture characteristics of the odontoid process.

Summary Of Background Data: Odontoid fractures of the second cervical vertebra (C2) represent the most common spine fracture type in the elderly.

View Article and Find Full Text PDF

Purpose: The proximal chevron osteotomy and the modified Lapidus arthrodesis are both procedures utilized for deformity correction in patients with severe symptomatic hallux valgus. The aim of the current study was to compare their biomechanical stability when using locking plate fixation.

Methods: Twelve matched pairs of human anatomical lower leg specimens underwent on one side a proximal chevron osteotomy with a medial locking plate and on the other side a modified Lapidus arthrodesis with a plantar locking plate utilizing an interfragmentary compression screw.

View Article and Find Full Text PDF

Purpose: Implant failure rates remain high after plate fixation in pelvic ring injuries. The aim of this study was to compare an alternative fixation technique with suture-button devices and anterior plate fixation in partially stable open-book injuries.

Material And Methods: We acquired 16 human fresh frozen anatomic pelvic specimens.

View Article and Find Full Text PDF

Numerous methods and devices are available for implant fixation in anterior cruciate ligament (ACL) reconstruction. Biomechanical data indicate high variability in fixation stability across different devices. This study aims to provide a better insight into measuring the structural characteristics and mechanical behavior of ACL implant fixations.

View Article and Find Full Text PDF

Background: The preparation of bone for the insertion of an osseointegrated transfemoral implant and the insertion process are performed at very low speeds in order to avoid thermal damages to bone tissue which may potentially jeopardize implant stability. The aim of this study was to quantify the temperature increase in the femur at different sites and insertion depths, relative to the final implant position during the stepwise implantation procedure.

Methods: The procedure for installation of the osseointegrated implant was performed on 24 femoral specimens.

View Article and Find Full Text PDF

The finite element (FE) analysis is a highly promising tool to simulate the behaviour of bone. Skeletal FE models in clinical routine rely on the information about the geometry and bone mineral density distribution from quantitative computed tomography (CT) imaging systems. Several parameters in CT imaging have been reported to affect the accuracy of FE models.

View Article and Find Full Text PDF
Article Synopsis
  • This study looks at how well different screws hold together a specific type of foot fracture called a Jones fracture, especially when a muscle pulls on it.
  • Researchers tested two types of screws: a special screw designed for Jones fractures and a different type called a headless compression screw.
  • They found that the special screw worked better, with no failures compared to some failures happening with the other screw when tested under load.
View Article and Find Full Text PDF

Background: Acetabular labral tears are managed with suture anchors providing good clinical outcomes. Knotless anchors are easier to use and have a quicker insertion time compared to knotted anchors. The purpose of this study was to compare the biomechanical behavior of two different anchor designs (knotted vs.

View Article and Find Full Text PDF

Background: This study aimed to provide an extensive and up-to-date analysis of running-related injuries (RRI) and analyze a broad range of contributing factors for a large heterogeneous and non-selected running population from Central Europe.

Methods: Anthropometric, training, footwear, anatomic malalignment, and injury data from 196 injured runners were assessed case-controlled and retrospectively. Univariate and multivariate regression models were developed to identify associated factors for specific injury locations and diagnoses.

View Article and Find Full Text PDF

Implant choice is a matter of concern in athletes and active patients who sustain a Jones fracture because they are prone to failure including non-union, screw failure, and refracture. The aim of this study was to compare the biomechanical behavior of a Jones fracture-specific screw (JFXS) with a cannulated headless compression screw (HCS) in a simulated partial weight-bearing and ultimate load Jones fracture fixation model. Ten matched pairs of human anatomical specimens underwent Jones fracture creation and consecutive intramedullary stabilization with a solid JFXS or a cannulated HCS.

View Article and Find Full Text PDF

Wear is a common cause for aseptic loosening in artificial joints. The purpose of this study was to develop an automated diagnostical method for identification of the number and size distribution of wear debris. For this purpose, metal debris samples were extracted from a hip simulator and then analyzed by the electrospray method combined with a differential mobility analyzer, allowing particle detection ranging from several nanometers up to 1 µm.

View Article and Find Full Text PDF

Predicting pathologic fractures in femora with metastatic lesions remains a clinical challenge. Currently used guidelines are inaccurate, especially to predict non-impeding fractures. This study evaluated the ability of a nonlinear quantitative computed tomography (QCT)-based homogenized voxel finite element (hvFE) model to predict patient-specific pathologic fractures.

View Article and Find Full Text PDF

Ankle orthoses are commonly used for prevention of recurrent ankle sprains. While there are some data on their functional performance or restriction of range of motion, there is little knowledge on the quantifiable passive mechanical effectiveness of various devices. This study aimed to determine the prophylactic stabilization effect for commonly prescribed ankle orthoses in a simulated recurrent ankle sprain.

View Article and Find Full Text PDF

Background: Non-traumatic avascular osteonecrosis of the femoral head (ONFH) is a severe disease causing destruction of the hip joint, often necessitating total hip arthroplasty (THA) even in young patients. Magnetic resonance imaging (MRI) is commonly used for diagnosis of ONFH, but provides limited insight into the subchondral bone microstructure.

Purpose: To analyze routine MRI findings in comparison to high-resolution quantitative computed tomography (HR-QCT) with a special focus on the subchondral layer and to estimate the importance of differences determining the indication for THA.

View Article and Find Full Text PDF

Purpose: The standardized sonographic hip screening according to Graf has increased reliability and comparability of measurements in the screening of developmental dysplasia of the hip (DDH). However, examiner dependent factors have been discussed to influence sonographic measurements. The objectives of this study were to examine the tolerance of the transducer positioning and to analyse the impact of transducer inclinations on Graf's hip grading system.

View Article and Find Full Text PDF

Pathologic fractures of femora in patients with metastatic cancer are associated with high morbidity and mortality. Prediction of impending fractures is based on unspecific clinical criteria or past clinician's experience, which leads to underestimation or overtreatment. The aim of this study was to investigate the effect of the site of metastatic lesions on biomechanical behavior of the proximal femur.

View Article and Find Full Text PDF

Purpose: Pathologic fractures in patients with bone metastases are a common problem in clinical orthopaedic routine. On one hand recognition of metastatic lesions, which are at a high risk of fracture, is essential for timely prophylactic fixation, while on the other hand patients with a low risk of pathologic fractures should be spared from overtreatment. The purpose of this review is to identify all methods for fracture risk evaluation in patients with femoral metastases in the literature and to evaluate their predictive values in clinical applications.

View Article and Find Full Text PDF