Magnetomicelles were produced by the self-assembly of magnetite iron oxide nanoflowers and the amphiphilic poly(styrene)--poly(acrylic acid) block copolymer to deliver a multifunctional theranostic agent. Their bioprocessing by cancer cells was investigated in a three-dimensional spheroid model over a 13-day period and compared with nonencapsulated magnetic nanoflowers. A degradation process was identified and monitored at various scales, exploiting different physicochemical fingerprints.
View Article and Find Full Text PDFMagnetic nanoparticles have been extensively explored as theranostic agents both in academic and clinical settings. Their self-assembly into nanohybrids using block copolymers can lead to new nanostructures with high functionalities and performances. Herein, we demonstrate a high-throughput and scalable method to elaborate magnetic micelles by the assembly of iron oxide magnetite nanoflowers, an efficient nanoheater, and the block copolymer Poly(styrene)--poly(acrylic acid) a microfluidic-assisted nanoprecipitation method.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
March 2024
Monitoring of prevalent airborne diseases such as COVID-19 characteristically involves respiratory assessments. While auscultation is a mainstream method for preliminary screening of disease symptoms, its utility is hampered by the need for dedicated hospital visits. Remote monitoring based on recordings of respiratory sounds on portable devices is a promising alternative, which can assist in early assessment of COVID-19 that primarily affects the lower respiratory tract.
View Article and Find Full Text PDFPurpose: To introduce an unsupervised deep-learning method for fast and effective correction of susceptibility artifacts in reversed phase-encode (PE) image pairs acquired with echo planar imaging (EPI).
Methods: Recent learning-based correction approaches in EPI estimate a displacement field, unwarp the reversed-PE image pair with the estimated field, and average the unwarped pair to yield a corrected image. Unsupervised learning in these unwarping-based methods is commonly attained via a similarity constraint between the unwarped images in reversed-PE directions, neglecting consistency to the acquired EPI images.
Magnetic particle imaging (MPI) offers unparalleled contrast and resolution for tracing magnetic nanoparticles. A common imaging procedure calibrates a system matrix (SM) that is used to reconstruct data from subsequent scans. The ill-posed reconstruction problem can be solved by simultaneously enforcing data consistency based on the SM and regularizing the solution based on an image prior.
View Article and Find Full Text PDFIn this research, a multi-step microfluidic reactor was used to fabricate chitosan - superparamagnetic iron oxide composite nanoparticles (Ch - SPIONs), where composite formation using chitosan was aimed to provide antibacterial property and nanoparticle stability for magnetic resonance imaging (MRI). Monodispersed Ch - SPIONs had an average particle size of 8.8 ± 1.
View Article and Find Full Text PDFIntroduction: Sleep is a modulator of glymphatic activity which is altered in various sleep disorders. Narcolepsy is a sleep disorder characterized by excessive daytime sleepiness (EDS), rapid onset of rapid eye movement (REM) sleep, cataplexy, disturbed night sleep with fragmentation. It is categorized into two types, type 1 (NT1) and type 2 (NT2) depending on the presence of cataplexy and/or absence of orexin.
View Article and Find Full Text PDFPurpose: Two-dimensional (2D) echo-planar radiofrequency (RF) pulses are widely used for reduced field-of-view (FOV) imaging in applications such as diffusion-weighted imaging. However, long pulse durations render the 2D RF pulses sensitive to off-resonance effects, causing local signal losses in reduced-FOV images. This work aims to achieve off-resonance robustness for 2D RF pulses via a sheared trajectory design.
View Article and Find Full Text PDFIEEE Trans Med Imaging
December 2022
Magnetic particle imaging (MPI) is a rapidly developing medical imaging modality that exploits the non-linear response of magnetic nanoparticles (MNPs). Color MPI widens the functionality of MPI, empowering it with the capability to distinguish different MNPs and/or MNP environments. The system function approach for color MPI relies on extensive calibrations that capture the differences in the harmonic responses of the MNPs.
View Article and Find Full Text PDFIEEE Trans Med Imaging
December 2022
Magnetic particle imaging (MPI) offers exceptional contrast for magnetic nanoparticles (MNP) at high spatio-temporal resolution. A common procedure in MPI starts with a calibration scan to measure the system matrix (SM), which is then used to set up an inverse problem to reconstruct images of the MNP distribution during subsequent scans. This calibration enables the reconstruction to sensitively account for various system imperfections.
View Article and Find Full Text PDFThe demand for highly efficient cancer diagnostic tools increases alongside the high cancer incidence nowadays. Moreover, there is an imperative need for novel cancer treatment therapies that lack the side effects of conventional treatment options. Developments in this aspect employ magnetic nanoparticles (MNPs) for biomedical applications due to their stability, biocompatibility, and magnetic properties.
View Article and Find Full Text PDFPurpose: Image quality in accelerated MRI rests on careful selection of various reconstruction parameters. A common yet tedious and error-prone practice is to hand-tune each parameter to attain visually appealing reconstructions. Here, we propose a parameter tuning strategy to automate hybrid parallel imaging (PI) - compressed sensing (CS) reconstructions via low-rank modeling of local k-space neighborhoods (LORAKS) supplemented with sparsity regularization in wavelet and total variation (TV) domains.
View Article and Find Full Text PDFPurpose: Magnetic particle imaging (MPI) is emerging as a highly promising imaging modality. Magnetic nanoparticles (MNPs) are used as imaging tracers in MPI, and their relaxation behavior provides the foundation for its functional imaging capability. Since MNPs are also utilized in magnetic fluid hyperthermia (MFH) and MPI enables localized MFH, temperature mapping arises as an important application area of MPI.
View Article and Find Full Text PDFMagn Reson Imaging
January 2022
Two-dimensional spatially selective radiofrequency (2DRF) excitation pulses are widely used for reduced field-of-view (FOV) targeted high-resolution diffusion weighted imaging (DWI), especially for anatomically small regions such as the spinal cord and prostate. The reduction in FOV achieved by 2DRF pulses significantly improve the in-plane off-resonance artifacts in single-shot echo planar imaging (ss-EPI). However, long durations of 2DRF pulses create a sensitivity to through-plane off-resonance effects, especially at 3T where the off-resonance field doubles with respect to 1.
View Article and Find Full Text PDFIEEE Trans Med Imaging
November 2020
Magnetic Particle Imaging (MPI) is an emerging medical imaging modality that images the spatial distribution of superparamagnetic iron oxide (SPIO) nanoparticles using their nonlinear response to applied magnetic fields. In standard x-space approach to MPI, the image is reconstructed by gridding the speed-compensated nanoparticle signal to the instantaneous position of the field free point (FFP). However, due to safety limits on the drive field, the field-of-view (FOV) needs to be covered by multiple relatively small partial field-of-views (pFOVs).
View Article and Find Full Text PDFAnisotropic macromolecules exposed to non-equilibrium (active) noise are very common in biological systems, and an accurate understanding of their anisotropic dynamics is therefore crucial. Here, we experimentally investigate the dynamics of isolated chains assembled from magnetic microparticles at a liquid-air interface and moving in an active bath consisting of motile E. coli bacteria.
View Article and Find Full Text PDFMulti-contrast images are commonly acquired together to maximize complementary diagnostic information, albeit at the expense of longer scan times. A time-efficient strategy to acquire high-quality multi-contrast images is to accelerate individual sequences and then reconstruct undersampled data with joint regularization terms that leverage common information across contrasts. However, these terms can cause features that are unique to a subset of contrasts to leak into the other contrasts.
View Article and Find Full Text PDFPurpose: Magnetostimulation, also known as peripheral nerve stimulation (PNS), is the dominant safety constraint in magnetic resonance imaging (MRI) for the gradient magnetic fields that operate around 0.1-1 kHz, and for the homogeneous drive field in magnetic particle imaging (MPI) that operates around 10-150 kHz. Previous studies did not report correlations between anatomical measures and magnetostimulation thresholds for the gradient magnetic fields in MRI.
View Article and Find Full Text PDFIEEE Trans Med Imaging
September 2019
Magnetic particle imaging (MPI) is a relatively new medical imaging modality, which detects the nonlinear response of magnetic nanoparticles (MNPs) that are exposed to external magnetic fields. The system matrix (SM) method for MPI image reconstruction requires a time consuming system calibration scan prior to image acquisition, where a single MNP sample is measured at each voxel position in the field-of-view (FOV). The scanned sample has the maximum size of a voxel so that the calibration measurements have relatively poor signal-to-noise ratio (SNR).
View Article and Find Full Text PDFIEEE Trans Med Imaging
August 2018
Magnetic particle imaging (MPI) is a novel imaging modality with important potential applications, such as angiography, stem cell tracking, and cancer imaging. Recently, there have been efforts to increase the functionality of MPI via multi-color imaging methods that can distinguish the responses of different nanoparticles, or nanoparticles in different environmental conditions. The proposed techniques typically rely on extensive calibrations that capture the differences in the harmonic responses of the nanoparticles.
View Article and Find Full Text PDFBiocompatible, colloidally stable and ultra-small FeO nanoparticles (SPIONs) coated with poly(N-isopropylacrylamide) (PNIPAM) were synthesized via surface-initiated ATRP (atom transfer radical polymerization) to prevent excessive aggregation of magnetic cores and interparticle crosslinking, and to provide control over polymer content. These SPION-PNIPAM nanoparticles (NPs) have a hydrodynamic size between 8 and 60 nm depending on the PNIPAM content, and hence are ultrasmall in size and have an LCST around 38 °C. They had a high drug-loading capacity reaching 9.
View Article and Find Full Text PDFSuperparamagnetic iron oxide nanoparticles (SPIONs) are widely used as a robust negative contrast agent on conventional MRI. In this study, we (a) synthesized a new class of cubic SPIONs as a dual-mode contrast agent in MRI and (b) showed the in-vivo feasibility of these nanaoparticles as a simultaneous positive and negative contrast agent. Relaxation properties and contrast enhancement analysis of the synthesized SPIONs with two different shapes (cubic vs.
View Article and Find Full Text PDFPurpose: Reduced field-of-view (rFOV) diffusion-weighted imaging (DWI) using 2D echo-planar radiofrequency (2DRF) excitation has been widely and successfully applied in clinical settings. The purpose of this work is to further improve its clinical utility by overcoming slice coverage limitations without any scan time penalty while providing robust fat suppression.
Theory And Methods: During multislice imaging with 2DRF pulses, periodic sidelobes in the slice direction cause partial saturation, limiting the slice coverage.