Because of the brain's complexity, developing effective treatments for neurological disorders is a formidable challenge. Research efforts to this end are advancing as in vitro systems have reached the point that they can imitate critical components of the brain's structure and function. Brain-on-a-chip (BoC) was first used for microfluidics-based systems with small synthetic tissues but has expanded recently to include in vitro simulation of the central nervous system (CNS).
View Article and Find Full Text PDFLayered double hydroxides (LDHs) offer unique source of inspiration for design of bone mimetic biomaterials due to their superior mechanical properties, drug delivery capability and regulation cellular behaviors, particularly by divalent metal cations in their structure. Three-dimensional (3D) bioprinting of LDHs holds great promise as a novel strategy thanks to highly tunable physiochemical properties and shear-thinning ability of LDHs, which allow shape fidelity after deposition. Herein, we introduce a straightforward strategy for extrusion bioprinting of cell laden nanocomposite hydrogel bioink of gelatin methacryloyl (GelMA) biopolymer and LDHs nanoparticles.
View Article and Find Full Text PDFAddressing osteochondral defects, the objective of current study was to synthesize bilayered hydrogel, where the cartilage layer was formed by alginate (Alg)-polyacrylamide (PAAm) with and without the addition of TGF-β3 and bone layer by laponite XLS/Alg-PAAm and characterize by in vitro and in vivo experiments. Exceeding the mechanical strength of Alg-PAAm (32.95 ± 1.
View Article and Find Full Text PDFThe desired organ in micro-tissue models of organ-on-a-chip (OoC) devices dictates the optimum biomaterials, divided into natural and synthetic biomaterials. They can resemble biological tissues' biological functions and architectures by constructing bioactivity of macromolecules, cells, nanoparticles, and other biological agents. The inclusion of such components in OoCs allows them having biological processes, such as basic biorecognition, enzymatic cleavage, and regulated drug release.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
April 2022
In this study, modified kappa-carrageenan/pectin hydrogel patches were fabricated for treatment of buccal fungal infections. For this purpose, kappa-carrageenan-g-acrylic acid was modified with different thiolated agents (L-cysteine and 3-mercaptopropionic acid), and the thiol content of the resulting modified kappa-carrageenan was confirmed by elemental analyzer. Then, the hydrogel patches were fabricated, and characterized by Fourier-transform infrared spectroscopy, thermogravimetric analysis, ex vivo mucoadhesion test, and swelling behavior.
View Article and Find Full Text PDFTraumatic injuries, tumor resections, and degenerative diseases can damage skeletal muscle and lead to functional impairment and severe disability. Skeletal muscle regeneration is a complex process that depends on various cell types, signaling molecules, architectural cues, and physicochemical properties to be successful. To promote muscle repair and regeneration, various strategies for skeletal muscle tissue engineering have been developed in the last decades.
View Article and Find Full Text PDFAn amphiphilic core/shell-type polymer-based drug carrier system (HPAE- PCL-b -MPEG), composed of hyperbranched poly(aminoester)-based polymer (HPAE) as the core building block and poly(ethylene glycol)-b - poly(ε-caprolactone) diblock polymers (MPEG-b -PCL) as the shell building block, was designed. The synthesized polymers were characterized with FTIR, 1 H NMR, 13 C NMR, and GPC analysis. Monodisperse HPAE-PCL-b - MPEG nanoparticles with dimensions of < 200 nm and polydispersity index of < 0.
View Article and Find Full Text PDFCurrent implantable materials are limited in terms of function as native tissue, and there is still no effective clinical treatment to restore articular impairments. Hereby, a functionalized polyacrylamide (PAAm)-alginate (Alg) Double Network (DN) hydrogel acting as an articular-like tissue is developed. These hydrogels sustain their mechanical stability under different temperature (+4 °C, 25 °C, 40 °C) and humidity conditions (60% and 75%) over 3 months.
View Article and Find Full Text PDFSutures, staples, clips and skin closure strips are used as the gold standard to close wounds after an injury. In spite of being the present standard of care, the utilization of these conventional methods is precarious amid complicated and sensitive surgeries such as vascular anastomosis, ocular surgeries, nerve repair, or due to the high-risk components included. Tissue adhesives function as an interface to connect the surfaces of wound edges and prevent them from separation.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
May 2021
Wound repair is a complex process that has not been entirely understood. It can conclude in several irregularities. Hence, designing an appropriate wound dressing that can accelerate the healing period is critical.
View Article and Find Full Text PDFAn approach for cancer treatment is modulation of tumor microenvironment. Based on the role of extracellular matrix in cell modulation, fabrication of textured materials mimicking extracellular matrix could provide novel opportunities such as determining cancer cell behaviour. With this background, in this work, we have fabricated doxorubicin hydrochloride loaded nanotextured films which promote topographical attachment of cancer cells to film surface, and eliminate cells by release of the anti-cancer drug encapsulated within the films.
View Article and Find Full Text PDFOxaceprol is well-defined therapeutic agent as an atypical inhibitor of inflammation in osteoarthritis. In the present study, we aimed to develop and characterize oxaceprol-loaded poly-lactide-co-glycolide (PLGA) nanoparticles for intra-articular administration in osteoarthritis. PLGA nanoparticles were prepared by double-emulsion solvent evaporation method.
View Article and Find Full Text PDFThe skin is the largest and most exposed organ in the human body. Not only it is involved in numerous biological processes essential for life but also it represents a significant endpoint for the application of pharmaceuticals. The area of in vitro skin tissue engineering has been progressing extensively in recent years.
View Article and Find Full Text PDFBone nonunion may occur when the fracture is unstable, or blood supply is impeded. To provide an effective treatment for the healing of nonunion defects, we introduce an injectable osteogenic hydrogel that can deliver cells and vasculogenic growth factors. We used a silicate-based shear-thinning hydrogel (STH) to engineer an injectable scaffold and incorporated polycaprolactone (PCL) nanoparticles that entrap and release vasculogenic growth factors in a controlled manner.
View Article and Find Full Text PDFThe aim of regenerative engineering is to restore complex tissues and biological systems through convergence in the fields of advanced biomaterials, stem cell science, and developmental biology. Hydrogels are one of the most attractive biomaterials for regenerative engineering, since they can be engineered into tissue mimetic 3D scaffolds to support cell growth due to their similarity to native extracellular matrix. Advanced nano- and micro-technologies have dramatically increased the ability to control properties and functionalities of hydrogel materials by facilitating biomimetic fabrication of more sophisticated compositions and architectures, thus extending our understanding of cell-matrix interactions at the nanoscale.
View Article and Find Full Text PDFNanotechnology offers significant potential in regenerative medicine, specifically with the ability to mimic tissue architecture at the nanoscale. In this perspective, we highlight key achievements in the nanotechnology field for successfully mimicking the composition and structure of different tissues, and the development of bio-inspired nanotechnologies and functional nanomaterials to improve tissue regeneration. Numerous nanomaterials fabricated by electrospinning, nanolithography and self-assembly have been successfully applied to regenerate bone, cartilage, muscle, blood vessel, heart and bladder tissue.
View Article and Find Full Text PDFPeripheral nerve gaps exceeding 1 cm require a bridging repair strategy. Clinical feasibility of autogenous nerve grafting is limited by donor site comorbidity. In this study we investigated neuroregenerative efficacy of autogenous vein grafts implanted with tissue fragments from distal nerve in combination with vascular endothelial growth factor (VEGF) or mesenchymal stem cells (MSCs) in repair of rat peripheral nerve defects.
View Article and Find Full Text PDFThe most commonly used surgical technique for repairing segmental nerve defects is autogenous nerve grafting; however, this method causes donor site morbidity. In this study, we sought to produce prefabricated nerve grafts that can serve as a conduit instead of autologous nerve using a controlled release system created with vascular endothelial growth factor (VEGF)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres. The study was performed in vitro and in vivo.
View Article and Find Full Text PDF