Publications by authors named "Emily Z Xu"

Chronic pulmonary hypertension in infancy and childhood is characterized by a fixed and progressive increase in pulmonary arterial pressure and resistance, pulmonary arterial remodeling, and right ventricular hypertrophy and systolic dysfunction. These abnormalities are replicated in neonatal rats chronically exposed to hypoxia from birth in which increased activity of Rho-kinase (ROCK) is critical to injury, as evidenced by preventive effects of ROCK inhibitors. Our objective in the present study was to examine the reversing effects of a late or rescue approach to treatment with a ROCK inhibitor on the pulmonary and cardiac manifestations of established chronic hypoxic pulmonary hypertension.

View Article and Find Full Text PDF

Chronic pulmonary hypertension in infancy and childhood frequently culminates in right-ventricular (RV) failure and early death. Current management may include prolonged treatment with inhaled nitric oxide (iNO). Our objective was to examine the effects of iNO on established chronic hypoxic pulmonary hypertension in juvenile rats, a model of chronic neonatal pulmonary hypertension characterized by increased pulmonary vascular resistance, vascular remodeling (RV hypertrophy and arterial medial wall thickening), and significant RV dysfunction.

View Article and Find Full Text PDF

Evidence implicates oxidative stress as playing a prominent role in the pathogenesis of pulmonary hypertension, to which peroxynitrite anion (ONOO(-)) may make a major contribution. Hypothesizing that removal of ONOO(-) would attenuate chronic neonatal pulmonary hypertension, we examined the effects of a ONOO(-) decomposition catalyst (FeTPPS) on pulmonary arteries in vitro, on primary cultured pulmonary artery smooth muscle cell (PASMC) and cardiomyocyte survival and growth, and on central hemodynamics in rat pups exposed to hypoxia (13% O(2)) for 7 days from birth. Daily FeTPPS (30 mg/kg ip) reduced lung nitrotyrosine content, attenuated vascular remodeling, and normalized pulmonary vascular resistance in hypoxia-exposed animals.

View Article and Find Full Text PDF

Rho-kinase (ROCK) inhibitors prevent pulmonary hypertension (PHT) in adult rodents, but little is known about their effects on the neonatal lung. Our objective was to examine the effects of ROCK inhibition on chronic hypoxia (CH)-induced PHT and abnormal lung structure in the neonatal rat. Pups were exposed to air or CH from postnatal d 1-14 while receiving Y-27632 (5 or 10 mg x kg(-1) x d(-1)), fasudil (20 mg x kg(-1) x d(-1)), or saline intraperitoneally.

View Article and Find Full Text PDF