Purpose: Computed Tomography Angiography (CTA) is the first line of imaging in the diagnosis of Large Vessel Occlusion (LVO) strokes. We trained and independently validated end-to-end automated deep learning pipelines to predict 3-month outcomes after anterior circulation LVO thrombectomy based on admission CTAs.
Methods: We split a dataset of 591 patients into training/cross-validation (n = 496) and independent test set (n = 95).
Purpose: To create and validate an automated pipeline for detection of early signs of irreversible ischemic change from admission CTA in patients with large vessel occlusion (LVO) stroke.
Methods: We retrospectively included 368 patients for training and 143 for external validation. All patients had anterior circulation LVO stroke, endovascular therapy with successful reperfusion, and follow-up diffusion-weighted imaging (DWI).
Background: A major driver of individual variation in long-term outcomes following a large vessel occlusion (LVO) stroke is the degree of collateral arterial circulation. We aimed to develop and evaluate machine-learning models that quantify LVO collateral status using admission computed tomography angiography (CTA) radiomics.
Methods: We extracted 1116 radiomic features from the anterior circulation territories from admission CTAs of 600 patients experiencing an acute LVO stroke.
Oropharyngeal squamous cell carcinoma (OPSCC) comprises cancers of the tonsils, tongue base, soft palate, and uvula. The staging of oropharyngeal cancers varies depending upon the presence or absence of human papillomavirus (HPV)-directed pathogenesis. The incidence of HPV-associated oropharyngeal cancer (HPV + OPSCC) is expected to continue to rise over the coming decades.
View Article and Find Full Text PDFSustained attention (SA) and working memory (WM) are critical processes, but the brain networks supporting these abilities in development are unknown. We characterized the functional brain architecture of SA and WM in 9- to 11-year-old children and adults. First, we found that adult network predictors of SA generalized to predict individual differences and fluctuations in SA in youth.
View Article and Find Full Text PDFWith advances in high-throughput image processing technologies and increasing availability of medical mega-data, the growing field of radiomics opened the door for quantitative analysis of medical images for prediction of clinically relevant information. One clinical area in which radiomics have proven useful is stroke neuroimaging, where rapid treatment triage is vital for patient outcomes and automated decision assistance tools have potential for significant clinical impact. Recent research, for example, has applied radiomics features extracted from CT angiography (CTA) images and a machine learning framework to facilitate risk-stratification in acute stroke.
View Article and Find Full Text PDFBackground And Purpose: As "time is brain" in acute stroke triage, the need for automated prognostication tools continues to increase, particularly in rapidly expanding tele-stroke settings. We aimed to create an automated prognostication tool for anterior circulation large vessel occlusion (LVO) stroke based on admission CTA radiomics.
Methods: We automatically extracted 1116 radiomics features from the anterior circulation territory on admission CTAs of 829 acute LVO stroke patients who underwent mechanical thrombectomy in two academic centers.
Objective: Acute ischemic stroke patients with large-vessel occlusion and good collateral blood flow have significantly better outcomes than patients with poor collateral circulation. The purpose of this study was to evaluate the cost-effectiveness of endovascular thrombectomy (EVT) based on collateral status and, in particular, to analyze its effectiveness in ischemic stroke patients with poor collaterals.
Methods: A decision analysis study was performed with Markov modeling to estimate the lifetime quality-adjusted life-years (QALYs) and associated costs of EVT based on collateral status.
Attention is central to many aspects of cognition, but there is no singular neural measure of a person's overall attentional functioning across tasks. Here, using original data from 92 participants performing three different attention-demanding tasks during functional magnetic resonance imaging, we constructed a suite of whole-brain models that can predict a profile of multiple attentional components (sustained attention, divided attention and tracking, and working memory capacity) for novel individuals. Multiple brain regions across the salience, subcortical and frontoparietal networks drove accurate predictions, supporting a common (general) attention factor across tasks, distinguished from task-specific ones.
View Article and Find Full Text PDFBackground: We investigated the effects of the side of large vessel occlusion (LVO) on post-thrombectomy infarct volume and clinical outcome with regard to admission National Institutes of Health Stroke Scale (NIHSS) score.
Methods: We retrospectively identified patients with anterior LVO who received endovascular thrombectomy and follow-up MRI. Applying voxel-wise general linear models and multivariate analysis, we assessed the effects of occlusion side, admission NIHSS, and post-thrombectomy reperfusion (modified Thrombolysis in Cerebral Infarction, mTICI) on final infarct distribution and volume as well as discharge modified Rankin Scale (mRS) score.
Introduction: Working memory is a critical cognitive ability that affects our daily functioning and relates to many cognitive processes and clinical conditions. Episodic memory is vital because it enables individuals to form and maintain their self-identities. Our study analyzes the extent to which whole-brain functional connectivity observed during completion of an N-back memory task, a common measure of working memory, can predict both working memory and episodic memory.
View Article and Find Full Text PDFReal-time functional magnetic resonance imaging (rt-fMRI) neurofeedback is a non-invasive, non-pharmacological therapeutic tool that may be useful for training behavior and alleviating clinical symptoms. Although previous work has used rt-fMRI to target brain activity in or functional connectivity between a small number of brain regions, there is growing evidence that symptoms and behavior emerge from interactions between a number of distinct brain areas. Here, we propose a new method for rt-fMRI, connectome-based neurofeedback, in which intermittent feedback is based on the strength of complex functional networks spanning hundreds of regions and thousands of functional connections.
View Article and Find Full Text PDFThe ability to sustain attention differs across people and changes within a single person over time. Although recent work has demonstrated that patterns of functional brain connectivity predict individual differences in sustained attention, whether these same patterns capture fluctuations in attention within individuals remains unclear. Here, across five independent studies, we demonstrate that the sustained attention connectome-based predictive model (CPM), a validated model of sustained attention function, generalizes to predict attentional state from data collected across minutes, days, weeks, and months.
View Article and Find Full Text PDFIndividual differences in working memory relate to performance differences in general cognitive ability. The neural bases of such individual differences, however, remain poorly understood. Here, using a data-driven technique known as connectome-based predictive modeling, we built models to predict individual working memory performance from whole-brain functional connectivity patterns.
View Article and Find Full Text PDFWhen an action is familiar, we are able to anticipate how it will change the state of the world. These expectations can result from retrieval of action-outcome associations in the hippocampus and the reinstatement of anticipated outcomes in visual cortex. How does this role for the hippocampus in action-based prediction change over time? We use high-resolution fMRI and a dual-training behavioral paradigm to examine how the hippocampus interacts with visual cortex during predictive and nonpredictive actions learned either three days earlier or immediately before the scan.
View Article and Find Full Text PDF