Publications by authors named "Emily Trentacoste"

Understanding drivers of water quality in local watersheds is the first step for implementing targeted restoration practices. Nutrient inventories can inform water quality management decisions by identifying shifts in nitrogen (N) and phosphorus (P) balances over space and time while also keeping track of the likely urban and agricultural point and nonpoint sources of pollution. The Chesapeake Bay Program's Chesapeake Assessment Scenario Tool (CAST) provides N and P balance data for counties throughout the Chesapeake Bay watershed, and these data were leveraged to create a detailed nutrient inventory for all the counties in the watershed from 1985-2019.

View Article and Find Full Text PDF

Ecosystem restoration may require implementing programs or best management practices (BMPs) in areas that are geographically far from the target ecosystem. Stakeholders in these areas may feel disconnected from the target ecosystem or may not have a clear understanding of local benefits from implemented practices. To achieve widespread participation in restoration efforts, it is important to engage stakeholders located where BMPs need to be implemented to identify and consider their local priorities and impacts.

View Article and Find Full Text PDF

Understanding the temporal and spatial roles of nutrient limitation on phytoplankton growth is necessary for developing successful management strategies. Chesapeake Bay has well-documented seasonal and spatial variations in nutrient limitation, but it remains unknown whether these patterns of nutrient limitation have changed in response to nutrient management efforts. We analyzed historical data from nutrient bioassay experiments (1992-2002) and data from long-term, fixed-site water-quality monitoring program (1990-2017) to develop empirical approaches for predicting nutrient limitation in the surface waters of the mainstem Bay.

View Article and Find Full Text PDF

To protect the aquatic living resources of Chesapeake Bay, the Chesapeake Bay Program partnership has developed guidance for state water quality standards, which include ambient water quality criteria to protect designated uses (DUs), and associated assessment procedures for dissolved oxygen (DO), water clarity/underwater bay grasses, and chlorophyll-a. For measuring progress toward meeting the respective states' water quality standards, a multimetric attainment indicator approach was developed to estimate combined standards attainment. We applied this approach to three decades of monitoring data of DO, water clarity/underwater bay grasses, and chlorophyll-a data on annually updated moving 3-year periods to track the progress in all 92 management segments of tidal waters in Chesapeake Bay.

View Article and Find Full Text PDF

Low dissolved oxygen (DO) conditions are a recurring issue in waters of Chesapeake Bay, with detrimental effects on aquatic living resources. The Chesapeake Bay Program partnership has developed criteria guidance supporting the definition of state water quality standards and associated assessment procedures for DO and other parameters, which provides a binary classification of attainment or impairment. Evaluating time series of these two outcomes alone, however, provides limited information on water quality change over time or space.

View Article and Find Full Text PDF

Diatoms are one of the most productive and successful photosynthetic taxa on Earth and possess attributes such as rapid growth rates and production of lipids, making them candidate sources of renewable fuels. Despite their significance, few details of the mechanisms used to regulate growth and carbon metabolism are currently known, hindering metabolic engineering approaches to enhance productivity. To characterize the transcript level component of metabolic regulation, genome-wide changes in transcript abundance were documented in the model diatom Thalassiosira pseudonana on a time-course of silicon starvation.

View Article and Find Full Text PDF

Algae have been used for food and nutraceuticals for thousands of years, and the large-scale cultivation of algae, or algaculture, has existed for over half a century. More recently algae have been identified and developed as renewable fuel sources, and the cultivation of algal biomass for various products is transitioning to commercial-scale systems. It is crucial during this period that institutional frameworks (i.

View Article and Find Full Text PDF

Biologically derived fuels are viable alternatives to traditional fossil fuels, and microalgae are a particularly promising source, but improvements are required throughout the production process to increase productivity and reduce cost. Metabolic engineering to increase yields of biofuel-relevant lipids in these organisms without compromising growth is an important aspect of advancing economic feasibility. We report that the targeted knockdown of a multifunctional lipase/phospholipase/acyltransferase increased lipid yields without affecting growth in the diatom Thalassiosira pseudonana.

View Article and Find Full Text PDF

Microalgae are among the most diverse organisms on the planet, and as a result of symbioses and evolutionary selection, the configuration of core metabolic networks is highly varied across distinct algal classes. The differences in photosynthesis, carbon fixation and processing, carbon storage, and the compartmentation of cellular and metabolic processes are substantial and likely to transcend into the efficiency of various steps involved in biofuel molecule production. By highlighting these differences, we hope to provide a framework for comparative analyses to determine the efficiency of the different arrangements or processes.

View Article and Find Full Text PDF