Background: Wilms tumor (WT) exhibits structural and epigenetic changes at chromosome 11p15, which also cause Beckwith-Wiedemann Syndrome (BWS). Children diagnosed with BWS have increased risk for WT. The aim of this study is to identify the molecular signaling signatures in BWS driving these tumors.
View Article and Find Full Text PDFBeckwith-Wiedemann Syndrome (BWS) is the most common human overgrowth disorder caused by structural and epigenetic changes to chromosome 11p15. Patients with BWS are predisposed to developing hepatoblastoma (HB). To better understand the mechanism of HB oncogenesis in this cancer predisposition background, we performed the first multi-dimensional study of HB samples collected from patients diagnosed with BWS.
View Article and Find Full Text PDFDNA methylation, chromatin-binding proteins, and DNA looping are common components regulating genomic imprinting which leads to parent-specific monoallelic gene expression. Loss of methylation (LOM) at the human imprinting center 2 (IC2) on chromosome 11p15 is the most common cause of the imprinting overgrowth disorder Beckwith-Wiedemann Syndrome (BWS). Here, we report a familial transmission of a 7.
View Article and Find Full Text PDFThe use of assisted reproductive technologies (ART) can induce a congenital overgrowth condition in humans and ruminants, namely Beckwith-Wiedemann syndrome (BWS) and large offspring syndrome (LOS), respectively. Shared phenotypes and epigenotypes have been found between BWS and LOS. We have observed global misregulation of transcripts in bovine foetuses with LOS.
View Article and Find Full Text PDF