The purpose of this study was to elucidate the mechanism of the airborne poultry dust (particulate matter, PM)-induced respiratory tract inflammation, a common symptom in agricultural respiratory diseases. The study was based on the hypothesis that poultry PM would induce the release of inflammatory cytokine interleukin-8 (IL-8) by respiratory epithelial cells under the upstream regulation by cytosolic phospholipase A2 (cPLA2) activation and subsequent formation of cyclooxygenase (COX)- and lipoxygenase (LOX)-catalyzed arachidonic acid (AA) metabolites (eicosanoids). Human lung epithelial cells (A549) in culture were treated with the poultry PM (0.
View Article and Find Full Text PDFWe have earlier reported that the redox-active antioxidant, vitamin C (ascorbic acid), activates the lipid signaling enzyme, phospholipase D (PLD), at pharmacological doses (mM) in the bovine lung microvascular endothelial cells (BLMVECs). However, the activation of phospholipase A(2) (PLA(2)), another signaling phospholipase, and the modulation of PLD activation by PLA(2) in the ECs treated with vitamin C at pharmacological doses have not been reported to date. Therefore, this study aimed at the regulation of PLD activation by PLA(2) in the cultured BLMVECs exposed to vitamin C at pharmacological concentrations.
View Article and Find Full Text PDFABSTRACT Currently, mercury has been identified as a risk factor in cardiovascular diseases among humans. Here, we tested our hypothesis that mercury modulates the activity of the vascular endothelial cell (EC) lipid signaling enzyme phospholipase A(2) (PLA(2)), which is an important player in the EC barrier functions. Monolayers of bovine pulmonary artery ECs (BPAECs) in culture, following labeling of membrane phospholipids with [(3)H]arachidonic acid (AA), were exposed to the inorganic form of mercury, mercury chloride, and the release of free AA (index of PLA(2) activity) and formation of AA metabolites were determined by liquid scintillation counting and enzyme immunoassay, respectively.
View Article and Find Full Text PDFOur earlier studies have shown that vitamin C at pharmacological doses (mM) induces loss of redox-dependent viability in bovine lung microvascular endothelial cells (BLMVECs) that is mediated by oxidative stress. Therefore, here, we investigated the vitamin C-induced activation of the lipid signaling enzyme, phospholipase D (PLD) in BLMVECs. Monolayer cultures of BLMVECs were treated with vitamin C (0-10 mM) for different time periods (0-2 h) and the activity of PLD was determined.
View Article and Find Full Text PDF