Intrinsically disordered arginine-glycine (RG) repeat domains are enriched in multilayered biomolecular condensates such as the nucleolus. nucleolar RG repeats are dispensable for nucleolar accumulation and instead contribute to the organization of sub-nucleolar compartments. The sufficiency of RG repeats to facilitate sub-nucleolar compartmentalization is unclear.
View Article and Find Full Text PDFGLH/Vasa/DDX4 helicases are core germ-granule proteins that promote germline development and fertility. A yeast-two-hybrid screen using Caenorhabditis elegans GLH-1 as bait identified BYN-1, the homolog of human bystin/BYSL. In humans, bystin promotes cell adhesion and invasion in gliomas, and, with its binding partner trophinin, triggers embryonic implantation into the uterine wall.
View Article and Find Full Text PDFObjectives: The mGlu2/3 receptor agonist LY379268 reduces sucrose-seeking, but not sucrose-taking, in male rats. This study explored the generality of this effect across the sexes. In addition, the effect of the drug on motivation to receive sucrose was assessed.
View Article and Find Full Text PDFThe intrinsically disordered RG/RGG repeat domain is found in several nucleolar and P-granule proteins, but how it influences their phase separation into biomolecular condensates is unclear. We survey all RG/RGG repeats in C. elegans and uncover nucleolar and P-granule-specific RG/RGG motifs.
View Article and Find Full Text PDFMolecular markers scalable for clinical use are critical for the development of effective treatments and the design of clinical trials. Here, we identify proteins in sera of patients and mouse models with Charcot-Marie-Tooth disease (CMT) with characteristics that make them suitable as biomarkers in clinical practice and therapeutic trials. We collected serum from mouse models of CMT1A (C61 het), CMT2D (GarsC201R, GarsP278KY), CMT1X (Gjb1-null), CMT2L (Hspb8K141N) and from CMT patients with genotypes including CMT1A (PMP22d), CMT2D (GARS), CMT2N (AARS) and other rare genetic forms of CMT.
View Article and Find Full Text PDFAdvances in genetic technology and small molecule drug development have paved the way for clinical trials in Charcot-Marie-Tooth disease (CMT); however, the current FDA-approved clinical trial outcome measures are insensitive to detect a meaningful clinical response. There is, therefore, a need to identify sensitive outcome measures or clinically relevant biomarkers. The aim of this study was to further evaluate plasma neurofilament light chain (NFL) as a disease biomarker in CMT.
View Article and Find Full Text PDFTargeted pharmacologic activation of antigen-specific (AgS) T cells may bypass limitations inherent in current T cell-based cancer therapies. We describe two immunotherapeutics platforms for selective delivery of costimulatory ligands and peptide-HLA (pHLA) to AgS T cells. We engineered and deployed on these platforms an affinity-attenuated variant of interleukin-2, which selectively expands oligoclonal and polyfunctional AgS T cells in vitro and synergizes with CD80 signals for superior proliferation versus peptide stimulation.
View Article and Find Full Text PDFHeterozygous mutations in six transfer RNA (tRNA) synthetase genes cause Charcot-Marie-Tooth (CMT) peripheral neuropathy. CMT mutant tRNA synthetases inhibit protein synthesis by an unknown mechanism. We found that CMT mutant glycyl-tRNA synthetases bound tRNA but failed to release it, resulting in tRNA sequestration.
View Article and Find Full Text PDFT cells expressing high levels of inhibitory receptors such as PD-1 and LAG-3 are a hallmark of chronic infections and cancer. Checkpoint blockade therapies targeting these receptors have been largely validated as promising strategies to restore exhausted T cell functions and clearance of chronic infections and tumors. The inability to develop long-term natural immunity in malaria-infected patients has been proposed to be at least partially accounted for by sustained expression of high levels of inhibitory receptors on T and B lymphocytes.
View Article and Find Full Text PDFPurpose: To assess the potential for CUE-101, a novel therapeutic fusion protein, to selectively activate and expand HPV16 E7-specific CD8 T cells as an off-the shelf therapy for the treatment of HPV16-driven tumors, including head and neck squamous cell carcinoma (HNSCC), cervical, and anal cancers.
Experimental Design: CUE-101 is an Fc fusion protein composed of a human leukocyte antigen (HLA) complex, an HPV16 E7 peptide epitope, reduced affinity human IL2 molecules, and an effector attenuated human IgG1 Fc domain. Human E7-specific T cells and human peripheral blood mononuclear cells (PBMC) were tested to demonstrate cellular activity and specificity of CUE-101, whereas activity of CUE-101 was assessed in HLA-A2 transgenic mice.
Gene therapy approaches are being deployed to treat recessive genetic disorders by restoring the expression of mutated genes. However, the feasibility of these approaches for dominantly inherited diseases - where treatment may require reduction in the expression of a toxic mutant protein resulting from a gain-of-function allele - is unclear. Here we show the efficacy of allele-specific RNAi as a potential therapy for Charcot-Marie-Tooth disease type 2D (CMT2D), caused by dominant mutations in glycyl-tRNA synthetase (GARS).
View Article and Find Full Text PDFThe specialized structure of the neuron requires that homeostasis is sustained over the meter or more that may separate a cell body from its axonal terminus. Given this impressive distance and an axonal volume that is many times that of the cell body, how is such a compartment grown during development, re-grown after injury, and maintained throughout adulthood? While early answers to these questions focused on the local environment or the cell soma as supplying the needs of the axon, it is now well-established that the axon has some unique needs that can only be met from within. Decades of research have revealed local translation as an indispensable mechanism of axonal homeostasis during development and regeneration in both invertebrates and vertebrates.
View Article and Find Full Text PDFCharcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous group of inherited polyneuropathies. Mutations in 80 genetic loci can cause forms of CMT, resulting in demyelination and axonal dysfunction. The clinical presentation, including sensory deficits, distal muscle weakness, and atrophy, can vary greatly in severity and progression.
View Article and Find Full Text PDFCharcot-Marie-Tooth disease type 2D (CMT2D) is a peripheral nerve disorder caused by dominant, toxic, gain-of-function mutations in the widely expressed, housekeeping gene, The mechanisms underlying selective nerve pathology in CMT2D remain unresolved, as does the cause of the mild-to-moderate sensory involvement that distinguishes CMT2D from the allelic disorder distal spinal muscular atrophy type V. To elucidate the mechanism responsible for the underlying afferent nerve pathology, we examined the sensory nervous system of CMT2D mice. We show that the equilibrium between functional subtypes of sensory neuron in dorsal root ganglia is distorted by mutations, leading to sensory defects in peripheral tissues and correlating with overall disease severity.
View Article and Find Full Text PDFMalaria remains a global health burden causing significant morbidity, yet the mechanisms underlying disease outcomes and protection are poorly understood. Herein, we analyzed the peripheral blood of a unique cohort of Malawian children with severe malaria, and performed a comprehensive overview of blood leukocytes and inflammatory mediators present in these patients. We reveal robust immune cell activation, notably of CD14+ inflammatory monocytes, NK cells and plasmacytoid dendritic cells (pDCs) that is associated with very high inflammation.
View Article and Find Full Text PDFPaclitaxel is a microtubule-stabilizing chemotherapeutic agent that is widely used in cancer treatment and in a number of curative and palliative regimens. Despite its beneficial effects on cancer, paclitaxel also damages healthy tissues, most prominently the peripheral sensory nervous system. The mechanisms leading to paclitaxel-induced peripheral neuropathy remain elusive, and therapies that prevent or alleviate this condition are not available.
View Article and Find Full Text PDFUnlabelled: Patients with Charcot-Marie-Tooth Type 2D (CMT2D), caused by dominant mutations in Glycl tRNA synthetase (GARS), present with progressive weakness, consistently in the hands, but often in the feet also. Electromyography shows denervation, and patients often report that early symptoms include cramps brought on by cold or exertion. Based on reported clinical observations, and studies of mouse models of CMT2D, we sought to determine whether weakened synaptic transmission at the neuromuscular junction (NMJ) is an aspect of CMT2D.
View Article and Find Full Text PDFPlasmodium falciparum infection can result in severe disease that is associated with elevated inflammation and vital organ dysfunction; however, malaria-endemic residents gain protection from lethal outcomes and manifest only mild symptoms during infection. To characterize host responses associated with this more effective antimalarial response, we characterized whole-blood transcriptional profiles in Rwandan adults during a mild malaria episode and compared them with findings from a convalescence sample. We observed transcriptional up-regulation in many pathways, including type I interferon, interferon γ, complement activation, and nitric oxide during malaria infection, which provide benchmarks of mild disease physiology.
View Article and Find Full Text PDFMonocytes are blood-derived mononuclear phagocytic cells that traffic throughout the body and can provide rapid innate immune effector responses in response to microbial pathogen infections. Among blood monocytes, the most abundant subset in mice is represented by inflammatory Ly6C(+) CCR2(+) monocytes and is the functional equivalent of the CD14(+) monocytes in humans. Herein we focus on published evidence describing the exquisite functional plasticity of these cells, and we extend this overview to their multiples roles in vivo during host immune defenses against microbial pathogen infections, as antigen-presenting cells, inflammatory cells or Trojan horse cells.
View Article and Find Full Text PDFMany patients who undergo hematopoietic cell transplantation (HCT) present with anemia and have received red blood cell transfusions before HCT. As a result, iron overload is frequent and appears to be particularly prominent in patients with myelodysplastic syndromes. There is evidence that peritransplant events contribute to further iron accumulation, although the mechanism that disrupts normal iron homeostasis remains to be determined.
View Article and Find Full Text PDFIron overload is common in patients undergoing allogeneic hematopoietic cell transplantation (HCT), but the mechanisms leading to overload are unknown. Here, we determined iron levels and the expression of iron regulatory proteins in the liver and gut of nonobese diabetic-severe combined immunodeficient (NOD/SCID) mice that underwent transplantation with syngeneic (histocompatible) or allogeneic (histoincompatible) T lymphocytes. Infusion of histoincompatible T cells resulted in a significant rise in serum iron levels and liver iron content.
View Article and Find Full Text PDFThe role of the marrow microenvironment in the pathophysiology of myelodysplastic syndromes (MDSs) remains controversial. Using stromal/hematopoietic cell cocultures, we investigated the effects of stroma-derived signals on apoptosis sensitivity in hematopoietic precursors. The leukemia-derived cell line KG1a is resistant to proapoptotic ligands.
View Article and Find Full Text PDFObjective: Clonal marrow cells from patients with early myelodysplastic syndrome (MDS) undergo apoptosis in response to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). Cells from advanced MDS are resistant to TRAIL. Two isoforms of the Flice inhibitory protein (FLIP) short (FLIPS) and FLIP long (FLIPL), which modulate TRAIL signals, showed disease-stage-dependent differential regulation.
View Article and Find Full Text PDFWe reported previously that Fas-induced hepatic failure in normal mice was attenuated or prevented by exogenous transferrin (Tf), particularly apoTf. Here we show in C57BL6J/129 mice with genetic inactivation of transferrin receptor 2 (TfR2(Y245X)), that Fas-induced hepatotoxicity (apoptosis; rise in plasma aspartate aminotransferase (AST) levels) was comparable to that in wild-type mice, but was not modified by pretreatment with Tf. Rises in plasma AST were preceded by a decline in serum iron levels.
View Article and Find Full Text PDF