Coarse-graining is a molecular modeling technique in which an atomistic system is represented in a simplified fashion that retains the most significant system features that contribute to a target output while removing the degrees of freedom that are less relevant. This reduction in model complexity allows coarse-grained molecular simulations to reach increased spatial and temporal scales compared with corresponding all-atom models. A core challenge in coarse-graining is to construct a force field that represents the interactions in the new representation in a way that preserves the atomistic-level properties.
View Article and Find Full Text PDFThe field of data-driven chemistry is undergoing an evolution, driven by innovations in machine learning models for predicting molecular properties and behavior. Recent strides in ML-based interatomic potentials have paved the way for accurate modeling of diverse chemical and structural properties at the atomic level. The key determinant defining MLIP reliability remains the quality of the training data.
View Article and Find Full Text PDF