Publications by authors named "Emily S Park"

Single cell RNA sequencing has the potential to elucidate transcriptional programs underlying key cellular phenotypes and behaviors. However, many cell phenotypes are incompatible with indiscriminate single cell sequencing because they are rare, transient, or can only be identified by imaging. Existing methods for isolating cells based on imaging for single cell sequencing are technically challenging, time-consuming, and prone to loss because of the need to physically transport single cells.

View Article and Find Full Text PDF

Immunocytochemistry (ICC), or immunofluorescence microscopy, is an essential biological technique for phenotyping cells in both research and diagnostic applications. Standard ICC methods often do not work well when the cell sample contains a small number of cells (<10 000) because of the significant cell loss that occurs during washing, staining, and centrifugation steps. Cell loss is particularly relevant when working with rare cells, such as circulating tumor cells, where such losses could significantly bias experimental outcomes.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) are malignant cells released into the bloodstream with the potential to form metastases in secondary sites. These cells, acquired non-invasively, represent a sample of highly relevant tumor tissue that is an alternative to difficult and low-yield tumor biopsies. In recent years, there has been growing interest in genomic profiling of CTCs to enable longitudinal monitoring of the tumor's adaptive response to therapy.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) have been implicated as the seeds of cancer metastasis and therefore have the potential to provide significant prognostic and diagnostic values. Here, we describe a procedure for separating CTCs from whole blood based on size and deformability using the microfluidic ratchet device. This device leverages the ratcheting motion of single cells created as they are deformed through funnel-shaped constrictions using oscillatory flow in order to divert cells based on differences in size and deformability.

View Article and Find Full Text PDF

Background: Circulating tumor cells (CTC) have become an important tool in the monitoring of patients with advanced prostate cancer (PC). The role of CTC in localized disease has been addressed by only few studies. However, results of CTC analyses are strongly dependent on the platform used for CTC enrichment and detection.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) offer tremendous potential for the detection and characterization of cancer. A key challenge for their isolation and subsequent analysis is the extreme rarity of these cells in circulation. Here, a novel label-free method is described to enrich viable CTCs directly from whole blood based on their distinct deformability relative to hematological cells.

View Article and Find Full Text PDF