A hybrid material comprised of beta-tricalcium phosphate (beta-TCP) and sodium lauryl sulfate (SLS) was prepared using a mechanochemical process, examined using particle size analysis, IR spectroscopy, (31)P, (23)Na, and (13)C solid-state NMR spectroscopy, and calcium dissolution experiments, and probed for in vitro remineralization of subsurface enamel lesions. Our results suggest that while the (31)P environments of beta-TCP remain unchanged during solid-state processing, there is noticeable shifting among the SLS (23)Na and (13)C environments. Therefore, given the structure of beta-TCP, along with our IR examinations and calcium dissolution isotherms, SLS appears to interface strongly with the cation deficient C(3) symmetry site of the beta-TCP hexagonal crystal lattice with probable emphasis placed on the underbonded CaO(3) polyhedra.
View Article and Find Full Text PDFA blended material composed of beta-tricalcium phosphate (beta-TCP) and fumaric acid (FA) was prepared using a mechanochemical process. The structure and properties of the TCP-FA material was probed using particle size analysis, infrared, (31)P and (13)C solid-state nuclear magnetic resonance (NMR) spectroscopy, powder X-ray diffraction and calcium bioavailability. NMR studies showed that orthophosphate environments within beta-TCP remain largely unaffected in the presence of FA during mechanochemical processing; alternately, (13)C data indicated the carboxylic groups of FA are strongly affected during processing with beta-TCP.
View Article and Find Full Text PDF