Experimental autoimmune encephalomyelitis (EAE) has been used as an animal model of multiple sclerosis to identify pathogenic cytokines that could be therapeutic targets. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is the only cytokine reported to be essential for EAE. We investigated the role of GM-CSF in EAE in C3HeB/FeJ mice that uniquely exhibit extensive brain and spinal cord inflammation.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
October 2016
Objective: We investigated T cell responses to myelin proteins in the blood of healthy controls and 2 groups of patients with relapsing-remitting multiple sclerosis (RRMS) who exhibited lesions either predominantly in the brain or predominantly in the spinal cord in order to assess whether distinct neuroinflammatory patterns were associated with different myelin protein-specific T cell effector function profiles and whether these profiles differed from healthy controls.
Methods: Peripheral blood mononuclear cells were obtained from patients with brain-predominant RRMS, patients with spinal cord-predominant RRMS, and age-matched healthy controls and analyzed by enzyme-linked immunosorbent spot assays to quantify interferon gamma-secreting (Th1) and interleukin 17-secreting (Th17) cells responding directly ex vivo to myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG).
Results: Although MBP and MOG elicited different responses, patients with multiple sclerosis (MS) who had spinal cord-predominant lesions exhibited significantly higher Th17:Th1 ratios in response to both MBP and MOG compared to patients with brain-predominant MS.
Multiple sclerosis (MS) is believed to be initiated when myelin-specific T cells infiltrate the central nervous system (CNS), triggering subsequent recruitment of inflammatory leukocytes to the CNS. The contribution of neutrophils to CNS autoimmune disease has been underappreciated, but several studies in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, indicate that neutrophils have an important role in inflammation. Neutrophils are hypothesized to contribute to the pathogenesis of EAE by producing cytokines and promoting breakdown of the blood brain barrier.
View Article and Find Full Text PDFThe efficacy of rituximab treatment in multiple sclerosis has renewed interest in the role of B cells in CNS autoimmunity. In this study, we show that B cells are the predominant MHC class II(+) subset in the naive CNS in mice, and they constitutively express proinflammatory cytokines. Incidence of experimental autoimmune encephalomyelitis induced by adoptive transfer was significantly reduced in C3HeB/Fej μMT (B cell-deficient) mice, suggesting an important role for CNS B cells in initiating inflammatory responses.
View Article and Find Full Text PDFMultiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system (CNS) manifested with varying clinical course, pathology, and inflammatory patterns. There are multiple animal models that reflect different aspects of this heterogeneity. Collectively, these models reveal a balance between pathogenic and regulatory CD4(+) T cells, CD8(+) T cells, and B cells that influences the incidence, timing, and severity of CNS autoimmunity.
View Article and Find Full Text PDF