The vascular endothelial growth factor (VEGF) signaling family has been implicated in neuroprotection and clinical progression in Alzheimer's disease (AD). Previous work in postmortem human dorsolateral prefrontal cortex demonstrated that higher transcript levels of VEGFB, PGF, FLT1, and FLT4 are associated with AD dementia, worse cognitive outcomes, and higher AD neuropathology. To expand prior work, we leveraged bulk RNA sequencing data, single nucleus RNA (snRNA) sequencing, and both tandem mass tag and selected reaction monitoring mass spectrometry proteomic measures from the post-mortem brain.
View Article and Find Full Text PDFApolipoprotein E4 (APOE-ε4), the strongest common genetic risk factor for Alzheimer's disease (AD), contributes to worse cognition in older adults. However, many APOE-ε4 carriers remain cognitively normal throughout life, suggesting that neuroprotective factors may be present in these individuals. In this study, we leverage whole-blood RNA sequencing (RNAseq) from 324 older adults to identify genetic modifiers of APOE-ε4 effects on cognition.
View Article and Find Full Text PDFA practical, modular synthesis of targeted molecular imaging agents (TMIAs) containing near-infrared dyes for optical molecular imaging (OMI) or chelated metals for magnetic resonance imaging (MRI) and single-photon emission correlation tomography (SPECT) or positron emission tomography (PET) has been developed. In the method, imaging modules are formed early in the synthesis by attaching imaging agents to the side chain of protected lysines. These modules may be assembled to provide a given set of single- or dual-modal imaging agents, which may be conjugated in the last steps of the synthesis under mild conditions to linkers and targeting groups.
View Article and Find Full Text PDFAlzheimer's disease (AD) disproportionately affects certain racial and ethnic subgroups, such as African American/Black and Hispanic adults. Genetic, comorbid, and socioeconomic risk factors contribute to this disparity; however, the molecular contributions have been largely unexplored. Herein, we conducted a pilot proteomics study of postmortem brains from African American/Black and non-Hispanic White adults neuropathologically diagnosed with AD compared to closely-matched cognitively normal individuals.
View Article and Find Full Text PDFGenetic mechanisms underlying age-related cognitive decline and dementia remain poorly understood. Here, we take advantage of the Diversity Outbred mouse population to utilize quantitative trait loci mapping and identify Dlgap2 as a positional candidate responsible for modifying working memory decline. To evaluate the translational relevance of this finding, we utilize longitudinal cognitive measures from human patients, RNA expression from post-mortem brain tissue, data from a genome-wide association study (GWAS) of Alzheimer's dementia (AD), and GWAS results in African Americans.
View Article and Find Full Text PDFAlzheimers Dement (N Y)
December 2019
Introduction: While telomere shortening, a marker of cellular aging, may impact the progression of age-related neurodegenerative diseases, its association with cognition is unclear, particularly in the context of Alzheimer's disease (AD) pathology.
Methods: Telomere, cognitive, and CSF data from 482 participants in the AD Neuroimaging Initiative (148 cognitively normal, 283 mild cognitive impairment, 51 AD) was leveraged to assess telomere length associations with cognition (measured by memory and executive function) and interactions with CSF amyloid-β, tau, and . Secondary analyses assessed brain volume and thickness outcomes.
A series of Cy5.5 dye analogs and targeted probes with net charges varied from -3 to 0 were synthesized by an optimized method, followed by comparing their spectral and photostability properties in saturated solutions of air, oxygen, and argon. The Cy5.
View Article and Find Full Text PDFVascular endothelial growth factor (VEGF) is associated with the clinical manifestation of Alzheimer's disease (AD). However, the role of the VEGF gene family in neuroprotection is complex due to the number of biological pathways they regulate. This study explored associations between brain expression of VEGF genes with cognitive performance and AD pathology.
View Article and Find Full Text PDF