Integr Environ Assess Manag
July 2024
In 2007, the USEPA issued its "Framework for Metals Risk Assessment." The framework provides technical guidance to risk assessors and regulators when performing human health and environmental risk assessments of metals. This article focuses on advances in the science including assessing bioavailability in aquatic ecosystems, short- and long-term fate of metals in aquatic ecosystems, and advances in risk assessment of metals in sediments.
View Article and Find Full Text PDFThe Arctic faces many environmental challenges, including the continued exploitation of its mineral resources such as nickel (Ni). The responsible development of Ni mining in the Arctic requires establishing a risk assessment framework that accounts for the specificities of this unique region. We set out to conduct preliminary assessments of Ni exposure and effects in aquatic Arctic ecosystems.
View Article and Find Full Text PDFNickel laterite ore deposits are becoming increasingly important sources of Ni for the global marketplace and are found mainly in tropical and subtropical regions, including Indonesia, the Philippines, Papua New Guinea, Cuba, and New Caledonia. There are few legislatively derived standards or guidelines for the protection of aquatic life for Ni in many of these tropical regions, and bioavailability-based environmental risk assessment (ERA) approaches for metals have mainly been developed and tested in temperate regions, such as the United States and Europe. This paper reports on a multi-institutional, 5-y testing program to evaluate Ni exposure, effects, and risk characterization in the Southeast Asia and Melanesia (SEAM) region, which includes New Caledonia, Papua New Guinea, the Philippines, and Indonesia.
View Article and Find Full Text PDFWater quality guidelines and ecological risk assessment of chemical substances like nickel (Ni) in tropical regions such as South East Asia and Melanesia are often based on temperate information as a result of fewer Ni ecotoxicity data available for tropical species. This leaves an unknown margin of uncertainty in the risk assessment in the tropics. In order to fill this data gap, this study was designed to conduct standard toxicity tests on Ni with two freshwater species (acute tests) and three marine species (acute and chronic tests) originated from tropical Hong Kong.
View Article and Find Full Text PDFThe absence of chronic toxicity data for tropical marine waters has limited our ability to derive appropriate water quality guideline values for metals in tropical regions. To aid environmental management, temperate data are usually extrapolated to other climatic (e.g.
View Article and Find Full Text PDFWe reviewed the literature on toxicity of nanoparticulate nickel (nano-Ni) to aquatic organisms, from the perspective of relevance and reliability in a regulatory framework. Our main findings were 1) much of the published nano-Ni toxicity data is of low or medium quality in terms of reporting key physical-chemical properties, methodologies, and results, compared with published dissolved nickel studies; and 2) based on the available information, some common findings about nanoparticle (NP) toxicity are not supported for nano-Ni. First, we concluded that nanoparticulate elemental nickel and nickel oxide, which differ in chemical composition, generally did not differ in their toxicity.
View Article and Find Full Text PDFDissolved Ni concentrations inhibiting the growth of juvenile great pond snails (Lymnaea stagnalis) have been documented to vary from about 1 to 200 µg L Ni. This variability makes L. stagnalis either a moderately sensitive or the most sensitive freshwater species to chronic Ni exposure tested to date.
View Article and Find Full Text PDFRegulatory jurisdictions worldwide are increasingly incorporating bioavailability-based toxicity models into development of protective values (PVALs) for freshwater and saltwater aquatic life (e.g., water quality criteria, standards, and/or guidelines) for metals.
View Article and Find Full Text PDFMore than two-thirds of the world's nickel (Ni) lateritic deposits are in tropical regions, and just less than half are within South East Asia and Melanesia (SEAM). With increasing Ni mining and processing in SEAM, environmental risk assessment tools are required to ensure sustainable development. Currently, there are no tropical-specific water or sediment quality guideline values for Ni, and the appropriateness of applying guideline values derived for temperate systems (e.
View Article and Find Full Text PDFCurrent ecological risk assessment and water quality regulations for nickel (Ni) use mechanistically based, predictive tools such as biotic ligand models (BLMs). However, despite many detailed studies, the precise mechanism(s) of Ni toxicity to aquatic organisms remains elusive. This uncertainty in the mechanism(s) of action for Ni has led to concern over the use of tools like the BLM in some regulatory settings.
View Article and Find Full Text PDFIntegr Environ Assess Manag
October 2016
To assess nickel (Ni) toxicity and behavior in freshwater sediments, a large-scale laboratory and field sediment testing program was conducted. The program used an integrative testing strategy to generate scientifically based threshold values for Ni in sediments and to develop integrated equilibrium partitioning-based bioavailability models for assessing risks of Ni to benthic ecosystems. The sediment testing program was a multi-institutional collaboration that involved extensive laboratory testing, field validation of laboratory findings, characterization of Ni behavior in natural and laboratory conditions, and examination of solid phase Ni speciation in sediments.
View Article and Find Full Text PDFThe South East Asian Melanesian (SEAM) region contains the world's largest deposits of nickel lateritic ores. Environmental impacts may occur if mining operations are not adequately managed. Effects data for tropical ecosystems are required to assess risks of contaminant exposure and to derive water quality guidelines (WQG) to manage these risks.
View Article and Find Full Text PDFEnviron Toxicol Chem
May 2016
The aquatic risk assessment for nickel (Ni) in the European Union is based on chronic species sensitivity distributions and the use of bioavailability models. To test whether a bioavailability-based safe threshold of Ni (the hazardous concentration for 5% of species [HC5]) is protective for aquatic communities, microcosms were exposed to 5 stable Ni treatments (6-96 μg/L) and a control for 4 mo to assess bioaccumulation and effects on phytoplankton, periphyton, zooplankton, and snails. Concentrations of Ni in the periphyton, macrophytes, and snails measured at the end of the exposure period increased in a dose-dependent manner but did not indicate biomagnification.
View Article and Find Full Text PDFDespite more than 5 decades of aquatic toxicity tests conducted with metal mixtures, there is still a need to understand how metals interact in mixtures and to predict their toxicity more accurately than what is currently done. The present study provides a background for understanding the terminology, regulatory framework, qualitative and quantitative concepts, experimental approaches, and visualization and data-analysis methods for chemical mixtures, with an emphasis on bioavailability and metal-metal interactions in mixtures of waterborne metals. In addition, a Monte Carlo-type randomization statistical approach to test for nonadditive toxicity is presented, and an example with a binary-metal toxicity data set demonstrates the challenge involved in inferring statistically significant nonadditive toxicity.
View Article and Find Full Text PDFRobust sediment quality criteria require chemistry and toxicity data predictive of concentrations where population/community response should occur under known geochemical conditions. Understanding kinetic and geochemical effects on toxicant bioavailability is key, and these are influenced by infaunal sediment bioturbation. This study used fine-scale sediment and porewater measurement of contrasting infaunal effects on carbon-normalized SEM-AVS to evaluate safe or potentially toxic nickel concentrations in a high-binding Spartina saltmarsh sediment (4%TOC; 35-45 μmol-S2-·g(-1)).
View Article and Find Full Text PDFEnviron Toxicol Chem
November 2013
Within the framework of European Union chemical legislations an extensive data set on the chronic toxicity of sediment nickel has been generated. In the initial phase of testing, tests were conducted with 8 taxa of benthic invertebrates in 2 nickel-spiked sediments, including 1 reasonable worst-case sediment with low concentrations of acid-volatile sulfide (AVS) and total organic carbon. The following species were tested: amphipods (Hyalella azteca, Gammarus pseudolimnaeus), mayflies (Hexagenia sp.
View Article and Find Full Text PDFTwo spiking methods were compared and nickel (Ni) partitioning was evaluated during a series of toxicity tests with 8 different freshwater sediments having a range of physicochemical characteristics. A 2-step spiking approach with immediate pH adjustment by addition of NaOH at a 2:1 molar ratio to the spiked Ni was effective in producing consistent pH and other chemical characteristics across a range of Ni spiking levels. When Ni was spiked into sediment having a high acid-volatile sulfide and organic matter content, a total equilibration period of at least 10 wk was needed to stabilize Ni partitioning.
View Article and Find Full Text PDFThis study evaluated the chronic toxicity of Ni-spiked freshwater sediments to benthic invertebrates. A 2-step spiking procedure (spiking and sediment dilution) and a 2-stage equilibration period (10 wk anaerobic and 1 wk aerobic) were used to spike 8 freshwater sediments with wide ranges of acid-volatile sulfide (AVS; 0.94-38 µmol/g) and total organic carbon (TOC; 0.
View Article and Find Full Text PDF