Publications by authors named "Emily R Crossley"

Thousands of prolonged sequences of human ultra-conserved non-coding elements (UCNEs) share only one common feature: peculiarities in the unique composition of their dinucleotides. Here we investigate whether the numerous weak signals emanating from these dinucleotide arrangements can be used for computational identification of UCNEs within the human genome. For this purpose, we analyzed 4272 UCNE sequences, encompassing 1 393 448 nucleotides, alongside equally sized control samples of randomly selected human genomic sequences.

View Article and Find Full Text PDF

Long human ultra-conserved non-coding elements (UCNEs) do not have any sequence similarity to each other or other characteristics that make them unalterable during vertebrate evolution. We hypothesized that UCNEs have unique dinucleotide (DN) composition and arrangements compared to the rest of the genome. A total of 4272 human UCNE sequences were analyzed computationally and compared with the whole genomes of human, chicken, zebrafish, and fly.

View Article and Find Full Text PDF

Sperm cells are transcriptionally and translationally silent. Therefore, they may use one of the remaining mechanisms to respond to stimuli in their environment, the post-translational modification of their proteins. Here we examined three post-translational modifications, acetylation, glutamylation, and glycylation of the protein tubulin in human and cattle sperm.

View Article and Find Full Text PDF