Publications by authors named "Emily Nowicki"

In an era of decreasing basic science curriculum at medical schools, we sought to re-imagine how to optimally deliver three core basic science disciplines (microbiology, pharmacology, and immunology) together with infectious disease in a 5-week course. This course, developed as part of a new 1-year pre-clinical basic science curriculum at the recently established Dell Medical School (DMS) at the University of Texas at Austin, featured a fully integrated curriculum in which the majority of the sessions were team-taught. This course, in line with the goals and missions of DMS, presented material using primarily self-directed and active learning approaches.

View Article and Find Full Text PDF

Over half of adults experience gingivitis, a mild yet treatable form of periodontal disease caused by the overgrowth of oral microbes. Left untreated, gingivitis can progress to a more severe and irreversible disease, most commonly chronic periodontitis. While periodontal diseases are associated with a shift in the oral microbiota composition, it remains unclear how this shift impacts microbiota function early in disease progression.

View Article and Find Full Text PDF

Objectives: We sought to define an occupational therapy intervention to promote medication management and to evaluate the acceptability and effectiveness of the intervention.

Method: Nineteen adults with chronic health conditions and poor medication adherence participated in a two-group, blinded, randomized study. They received either an occupational therapy or a standard care intervention.

View Article and Find Full Text PDF

Gram-negative bacteria survive harmful environmental stressors by modifying their outer membrane. Much of this protection is afforded upon remodeling of the lipid A region of the major surface molecule lipopolysaccharide (LPS). For example, the addition of cationic substituents, such as 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosphoehthanolamine (pEtN) at the lipid A phosphate groups, is often induced in response to specific environmental flux stabilizing the outer membrane.

View Article and Find Full Text PDF

Gram-negative bacteria have evolved modification machinery to promote a dynamic outer membrane in response to a continually fluctuating environment. The kinase LpxT, for example, adds a phosphate group to the lipid A moiety of some Gram-negatives including Escherichia coli and Salmonella enterica. LpxT activity is inhibited under conditions that compromise membrane integrity, resulting instead in the addition of positively charged groups to lipid A that increase membrane stability and provide resistance to cationic antimicrobial peptides.

View Article and Find Full Text PDF

Rates of infection with hospital-acquired Acinetobacter baumannii have exploded over the past decade due to our inability to limit persistence and effectively treat disease. A. baumannii quickly acquires antibiotic resistance, and its genome encodes mechanisms to tolerate biocides and desiccation, which enhance its persistence in hospital settings.

View Article and Find Full Text PDF

Here we implement ultraviolet photodissociation (UVPD) in an online liquid chromatographic tandem mass spectrometry (MS/MS) strategy to support analysis of complex mixtures of lipid A combinatorially modified during development of vaccine adjuvants. UVPD mass spectrometry at 193 nm was utilized to characterize the structures and fragment ion types of lipid A from Escherichia coli, Vibrio cholerae, and Pseudomonas aeruginosa using an Orbitrap mass spectrometer. The fragment ions generated by UVPD were compared to those from collision induced dissociation (CID) and higher energy collision dissociation (HCD) with respect to the precursor charge state.

View Article and Find Full Text PDF