Moon snails (family: Naticidae) lay egg masses that are rich in bacterial species distinct from the surrounding environment. We hypothesized that this microbiome chemically defends the moon snail eggs from predation and pathogens. Herein, we report the discovery of bokeelamides, new lipopeptides from the egg mass-associated bacterium, , which were discovered using mass spectrometry (MS)-based metabolomics.
View Article and Find Full Text PDFMicrobiol Spectr
November 2024
Moon snails (Family: Naticidae) lay eggs using a mixture of mucus and sediment to form an egg mass commonly referred to as an egg collar. These egg collars do not appear to experience micro-biofouling or predation, and this observation led us to hypothesize that the egg collars possess a chemically rich microbiota that protect the egg collars from pathogens. Herein, we sought to gain an understanding of the bacterial composition of egg collars laid by a single species of moon snails, , by amplifying and sequencing the 16S rRNA gene from the egg collar and sediment samples collected at four distinct geographical regions in southwest Florida.
View Article and Find Full Text PDFMoon Snails lay eggs using a mixture of mucus and sediment to form an egg mass commonly referred to as an egg collar. These collars do not appear to experience micro-biofouling or predation and this observation led us to hypothesize that the egg collars possess a chemically-rich microbiota that protect the egg collars from pathogens. Herein, we sought to gain an understanding of the bacterial composition of the egg collars by amplifying and sequencing the 16S rRNA gene from egg collar and sediment samples collected at four distinct geographical regions in SW Florida.
View Article and Find Full Text PDFMillipedes have long been known to produce a diverse array of chemical defense agents that deter predation. These compounds, or their precursors, are stored in high concentration within glands (ozadenes) and are released upon disturbance. The subterclass Colobognatha contains four orders of millipedes, all of which are known to produce terpenoid alkaloids-spare the Siphonophorida that produce terpenes.
View Article and Find Full Text PDFBiofilms commonly develop in immunocompromised patients, which leads to persistent infections that are difficult to treat. In the biofilm state, bacteria are protected against both antibiotics and the host's immune system; currently, there are no therapeutics that target biofilms. In this study, we screened a chemical fraction library representing the natural product capacity of the microbiota of marine egg masses, namely, the moon snail egg collars.
View Article and Find Full Text PDFNext generation antimicrobial therapeutics are desperately needed as new pathogens with multiple resistance mechanisms continually emerge. Two oxaboroles, tavaborole and crisaborole, were recently approved as topical treatments for onychomycosis and atopic dermatitis, respectively, warranting further studies into this privileged structural class. Herein, we report the antimicrobial properties of 3-substituted-2()-oxaboroles, an unstudied family of medicinally relevant oxaboroles.
View Article and Find Full Text PDFWhile quinones are essential for respiratory microorganisms, their importance for microbes that rely on fermentation metabolism is not understood. This gap in knowledge hinders our understanding of anaerobic microbial habitats, such in mammalian digestive tracts and fermented foods. We show that a model fermentative lactic acid bacteria species abundant in human, animal, and insect microbiomes and fermented foods, uses multiple exogenous, environmental quinones as electron shuttles for a hybrid metabolism involving EET.
View Article and Find Full Text PDFA rich potential source of new antibiotics are undeveloped natural product cytotoxins, provided they can be derivatized to restrict their activity to bacteria. In this work, we describe modification of one such candidate, the broad-spectrum, translation termination inhibitor, blasticidin S. By semisynthetically modifying blasticidin S, we produced a series of ester derivatives of this highly polar, zwitterionic compound in a single step.
View Article and Find Full Text PDFMillipedes (Diplopoda) are well known for their toxic or repellent defensive secretions. Here, we describe (6a,10a,10b)-8,8-dimethyldodecahydropyrrolo[2,1-]isoquinoline [deoxybuzonamine ()] and (-6a,10a,10b)-8,8-dimethyldodecahydropyrrolo[2,1-]isoquinoline [deoxybuzonamine ()], two isomers of deoxybuzonamine found in the chemical defense secretions of the millipede Wood (Colobognatha, Platydesmida, Andrognathidae). The carbon-nitrogen skeleton of these compounds was determined from their MS and GC-FTIR spectra obtained from the MeOH extract of whole millipedes, along with a subsequent selective synthesis.
View Article and Find Full Text PDFLuquilloamides A-G (-) were isolated from a small environmental collection of a marine cyanobacterium found growing on eelgrass ( sp.) near Luquillo, Puerto Rico. Structure elucidation of the luquilloamides was accomplished via detailed NMR and MS analyses, and absolute configurations were determined using a combination of advanced Mosher's method, -based configuration analysis, semisynthetic fragment analysis derived from ozonolysis, methylation, Baeyer-Villiger oxidation, Mosher's esterification, specific rotations, and ECD data.
View Article and Find Full Text PDFFungus-growing ants engage in a multilateral symbiosis: they cultivate a fungal garden as their primary food source and host symbiotic actinobacteria ( spp.) that provide chemical defenses. The bacterial symbionts produce small specialized metabolites that protect the fungal garden from specific fungal pathogens ( spp.
View Article and Find Full Text PDFDiatoms are photosynthetic microalgae that fix a significant fraction of the world's carbon. Because of their photosynthetic efficiency and high-lipid content, diatoms are priority candidates for biofuel production. Here, we report that sporulating Bacillus thuringiensis and other members of the Bacillus cereus group, when in co-culture with the marine diatom Phaeodactylum tricornutum, significantly increase diatom cell count.
View Article and Find Full Text PDFHerein is a report on the molecular exchange occurring between multilateral symbiosis partners-a tit-for-tat exchange that led to the characterization of two new metabolites, conocandin B (fungal-derived) and dentigerumycin F (bacterial-derived). The structures were determined by NMR, mass spectrometry, genomic analysis, and chemical derivatizations. Conocandin B exhibits antimicrobial activity against both the bacterial symbionts of fungus-growing ant and human pathogenic strains by selectively inhibiting FabH, thus disrupting fatty acid biosynthesis.
View Article and Find Full Text PDFOver the past 70 years, the search for small molecules from nature has transformed biomedical research: natural products are the basis for half of all pharmaceuticals; the quest for total synthesis of natural products fueled development of methodologies for organic synthesis; and their biosynthesis presented unprecedented biochemical transformations, expanding our chemo-enzymatic toolkit. Initially, the discovery of small molecules was driven by bioactivity-guided fractionation. However, this approach yielded the frequent rediscovery of already known metabolites.
View Article and Find Full Text PDFBacterial symbionts frequently provide chemical defenses for their hosts, and such systems can provide discovery pathways to new antifungals and structurally intriguing metabolites. This report describes a small family of naturally occurring small molecules with chimeric structures and a mixed biosynthesis that features an unexpected but key nonenzymatic step. An insect-associated strain's activity in an murine candidiasis assay led to the discovery of a family of highly hydrogen-deficient metabolites.
View Article and Find Full Text PDFSome anaerobic bacteria use insoluble minerals as terminal electron acceptors and discovering the ways in which electrons move through the membrane barrier to the exterior acceptor forms an active field of research with implications for both bacterial physiology and bioenergy. A previous study suggested that MR-1 utilizes a small, polar, redox active molecule that serves as an electron shuttle between the bacteria and insoluble acceptors, but the shuttle itself has never been identified. Through isolation and synthesis, we identify it as ACNQ (2-amino-3-carboxy-1,4-naphthoquinone), a soluble analog of menaquinone.
View Article and Find Full Text PDFNatural products and their derivatives continue to be wellsprings of nascent therapeutic potential. However, many laboratories have limited resources for biological evaluation, leaving their previously isolated or synthesized compounds largely or completely untested. To address this issue, the Canvass library of natural products was assembled, in collaboration with academic and industry researchers, for quantitative high-throughput screening (qHTS) across a diverse set of cell-based and biochemical assays.
View Article and Find Full Text PDFEnteric Gram-negative rods (GNR), which are frequent causes of community-acquired and nosocomial infections, are increasingly resistant to the antibiotics in our current armamentarium. One solution to this medical dilemma is the development of novel classes of antimicrobial compounds. Here we report the development of a robust, whole cell-based, high-throughput metabolic assay that detects compounds with activity against carbapenem-resistant Klebsiella pneumoniae.
View Article and Find Full Text PDFThe rapid emergence of antibiotic-resistant pathogenic bacteria has accelerated the search for new antibiotics. Many clinically used antibacterials were discovered through culturing a single microbial species under nutrient-rich conditions, but in the environment, bacteria constantly encounter poor nutrient conditions and interact with neighboring microbial species. In an effort to recapitulate this environment, we generated a nine-strain actinomycete community and used 16S rDNA sequencing to deconvolute the stochastic production of antimicrobial activity that was not observed from any of the axenic cultures.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2018
Certain plant-associated Proteobacteria sense their host environment by detecting an unknown plant signal recognized by a member of a LuxR subfamily of transcription factors. This interkingdom communication is important for both mutualistic and pathogenic interactions. The root endophyte sp.
View Article and Find Full Text PDFOverexpression of the Pseudomonas virulence factor ( pvf) biosynthetic operon led to the identification of a family of pyrazine N-oxides (PNOs), including a novel dihydropyrazine N,N'-dioxide (dPNO) metabolite. The nonribosomal peptide synthetase responsible for production of (d)PNOs was characterized, and a biosynthetic pathway for (d)PNOs was proposed. This work highlights the unique chemistry catalyzed by pvf-encoded enzymes and sets the stage for bioactivity studies of the metabolites produced by the virulence pathway.
View Article and Find Full Text PDFPrevious studies identified an adamantane dipeptide piperazine 3.47 that inhibits Ebola virus (EBOV) infection by targeting the essential receptor Niemann-Pick C1 (NPC1). The physicochemical properties of 3.
View Article and Find Full Text PDFAberrant activation of phosphatidylinosito-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT) signaling in cancer has led to pursuit of inhibitors for targeting this pathway. However, inhibitors of PI3K and AKT have failed to yield efficacious results without adverse effects. Here, we screened a library containing 441 authenticated traditional chinese medicine (TCM) plant extracts by examining their effect on cell viability of a human mammary epithelial cell line HMEC-PIK3CA, which expresses mutant PIK3CA and has constitutively active AKT signaling.
View Article and Find Full Text PDFMethane-oxidizing bacteria, aerobes that utilize methane as their sole carbon and energy source, are being increasingly studied for their environmentally significant ability to remove methane from the atmosphere. Their genomes indicate that they also have a robust and unusual secondary metabolism. Bioinformatic analysis of the Methylobacter tundripaludum genome identified biosynthetic gene clusters for several intriguing metabolites, and this report discloses the structural and genetic characterization of tundrenone, one of these metabolites.
View Article and Find Full Text PDFBacteria and fungi in shared environments compete with one another for common substrates, and this competition typically involves microbially-produced small molecules. An investigation of one shared environmental niche, the carton material of the Formosan subterranean termite Coptotermes formosanus, identified the participants on one of these molecular exchanges. Molecular characterization of several termite-associated actinobacteria strains identified eleven known antimicrobial metabolites that may aid in protecting the C.
View Article and Find Full Text PDF