This study examines how heart rate (HR) affects hemodynamics in a South African infant with Coarctation of the Aorta. Computed tomography angiography segments aortic coarctation anatomy; Doppler echocardiography derives inlet flow waveforms. Simulations occur at 100, 120, and 160 beats per minute, representing reduced, resting, and elevated HR levels.
View Article and Find Full Text PDFAortic valve disease is often treated with bioprosthetic valves. An alternative treatment is aortic valve neocuspidization which is a relatively new reparative procedure whereby the three aortic cusps are replaced with patient pericardium or bovine tissues. Recent research indicates that aortic blood flow is disturbed, and turbulence effects have yet to be evaluated in either bioprosthetic or aortic valve neocuspidization valve types in patient-specific settings.
View Article and Find Full Text PDFObjectives: Aortic valve neocuspidalization aims to replace the 3 aortic cusps with autologous pericardium pre-treated with glutaraldehyde, and it is a surgical alternative to the classical aortic valve replacement (AVR). Image-based patient-specific computational fluid dynamics allows the derivation of shear stress on the aortic wall [wall shear stress (WSS)]. Previous studies support a potential link between increased WSS and histological alterations of the aortic wall.
View Article and Find Full Text PDFRecent studies suggest that blood flow in main arteries is intrinsically disturbed, even under healthy conditions. Despite this, many computational fluid dynamics (CFD) analyses of aortic haemodynamics make the assumption of laminar flow, and best practices surrounding appropriate modelling choices are lacking. This study aims to address this gap by evaluating different modelling and post-processing approaches in simulations of a patient-specific aorta.
View Article and Find Full Text PDFPurpose: This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are investigated.
Methods: The model extends our previously developed one-dimensional(1D) mathematical models for fibrinolysis by incorporating targeted thrombolysis.
: Combined intravenous thrombolysis and mechanical thrombectomy (IVT-MT) is a common treatment in acute ischaemic stroke, however the interaction between IVT and MT from a physiological standpoint is poorly understood. In this pilot study, we conduct numerical simulations of combined IVT-MT with various idealised stent retriever configurations to evaluate performance in terms of complete recanalisation times and lysis patterns. : A 3D patient-specific geometry of a terminal internal carotid artery with anterior and middle cerebral arteries is reconstructed, and a thrombus is artificially implanted in the MCA branch.
View Article and Find Full Text PDFUnlabelled: Blood flow in the aorta is often assumed laminar, however aortic valve pathologies may induce transition to turbulence and our understanding of turbulence effects is incomplete. The aim of the study was to provide a detailed analysis of turbulence effects in aortic valve stenosis (AVS).
Methods: Large-eddy simulation (LES) of flow through a patient-specific aorta with AVS was conducted.
Int J Numer Method Biomed Eng
October 2020
The Food and Drug Administration's (FDA) benchmark nozzle model has been studied extensively both experimentally and computationally. Although considerable efforts have been made on validations of a variety of numerical models against available experimental data, the transitional flow cases are still not fully resolved, especially with regards to detailed comparison of predicted turbulence quantities with experimental measurements. This study aims to fill this gap by conducting large-eddy simulations (LES) of flow through the FDA's benchmark model, at a transitional Reynolds number of 2000.
View Article and Find Full Text PDF