Publications by authors named "Emily M Heckman"

This paper reports the first known investigation of power dissipation and electrical breakdown in aerosol-jet-printed (AJP) graphene interconnects. The electrical performance of aerosol-jet printed (AJP) graphene was characterized using the Transmission Line Method (TLM). The electrical resistance decreased with increasing printing pass number (n); the lowest sheet resistance measured was 1.

View Article and Find Full Text PDF

A complex of salmon milt deoxyribonucleic acid (DNA) and the cationic surfactant cetyltrimethylammonium (CTMA) forms an organic-soluble biomaterial that can be readily incorporated within an organically modified silane-based xerogel. The photoluminescence (PL) intensity and excited-state luminescence lifetime of tris(4,7'-diphenyl-1,10'-phenanathroline) ruthenium(II) [(Ru(dpp)3](2+), a common O2 responsive luminophore, increases in the presence of DNA-CTMA within the xerogel. The increase in the [Ru(dpp)3](2+)excited-state lifetime in the presence of DNA-CTMA arises from DNA intercalation that attenuates one or more non-radiative processes, leading to an increase in the [Ru(dpp)3](2+) excited-state lifetime.

View Article and Find Full Text PDF

Measurements of optical transmission and several thermal properties of Hg(1-x)Cd(x)Te alloys are reported for a few values of the alloy composition parameter x, which was determined by a microprobe technique. The values of the thermal diffusivity, specific heat, and thermal conductivity were measured using the laser-flash method. These results are reported at four discrete temperatures between 90 and 400 K and compared to those of three well-characterized semiconductor materials: Si, InAs, and InSb.

View Article and Find Full Text PDF