Nature-based solutions that use a counterfactual scenario depend heavily on the methodology used to determine the business as usual (BAU) case, i.e., the "baseline.
View Article and Find Full Text PDFExpansion of many tree species lags behind climate change projections. Extreme storms can rapidly overcome this lag, especially for coastal species, but how will storm-driven expansion shape intraspecific genetic variation? Do storms provide recruits only from the nearest sources, or from more distant sources? Answers to these questions have ecological and evolutionary implications, but empirical evidence is absent from the literature. In 2017, Hurricane Irma provided an opportunity to address this knowledge gap at the northern range limit of the neotropical black mangrove (Avicennia germinans) on the Atlantic coast of Florida, USA.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2019
Climate change is driving the tropicalization of temperate ecosystems by shifting the range edges of numerous species poleward. Over the past few decades, mangroves have rapidly displaced salt marshes near multiple poleward mangrove range limits, including in northeast Florida. It is uncertain whether such mangrove expansions are due to anthropogenic climate change or natural climate variability.
View Article and Find Full Text PDFClimate change-driven shifts in species ranges are ongoing and expected to increase. However, life-history traits may interact with climate to influence species ranges, potentially accelerating or slowing range shifts in response to climate change. Tropical mangroves have expanded their ranges poleward in the last three decades.
View Article and Find Full Text PDFMangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical, subtropical, and warm temperate coasts. Despite repeated demonstrations of their ecologic and economic value, multiple stressors including nutrient over-enrichment threaten these and other coastal wetlands globally. These ecosystems will be further stressed if tropical storm intensity and frequency increase in response to global climate changes.
View Article and Find Full Text PDFAlthough mangroves possess a variety of morphological and physiological adaptations for life in a stressful habitat, interspecific differences in survival and growth under different environmental conditions can shape their local and geographic distributions. Soil salinity and light are known to affect mangrove performance, often in an interactive fashion. It has also been hypothesized that mangroves are intrinsically shade intolerant due to the high physiological cost of coping with saline flooded soils.
View Article and Find Full Text PDFInvasive plants may compete with native plants by increasing the pressure of native consumers, a mechanism known as "apparent competition." Apparent competition can be as strong as or stronger than direct competition, but the role of apparent competition has rarely been examined in biological invasions. We used four years of demographic data and seed-removal experiments to determine if introduced grasses caused elevated levels of seed consumption on native plant species in a coastal dune system in California, USA.
View Article and Find Full Text PDF