Functional magnetic resonance imaging (fMRI) in awake infants has the potential to reveal how the early developing brain gives rise to cognition and behavior. However, awake infant fMRI poses significant methodological challenges that have hampered wider adoption. The present work takes stock after the collection of a substantial amount of awake infant fMRI data across multiple studies from two labs at different institutions.
View Article and Find Full Text PDFAs scientists interested in fetal, infant, and toddler (FIT) neurodevelopment, our research questions often focus on how individual children differ in their neurodevelopment and the predictive value of those individual differences for long-term neural and behavioral outcomes. Measuring and interpreting individual differences in neurodevelopment can present challenges: Is there a "standard" way for the human brain to develop? How do the semantic, practical, or theoretical constraints that we place on studying "development" influence how we measure and interpret individual differences? While it is important to consider these questions across the lifespan, they are particularly relevant for conducting and interpreting research on individual differences in fetal, infant, and toddler neurodevelopment due to the rapid, profound, and heterogeneous changes happening during this period, which may be predictive of long-term outcomes. This article, therefore, has three goals: 1) to provide an overview about how individual differences in neurodevelopment are studied in the field of developmental cognitive neuroscience, 2) to identify challenges and considerations when studying individual differences in neurodevelopment, and 3) to discuss potential implications and solutions moving forward.
View Article and Find Full Text PDFHumans effortlessly use vision to plan and guide navigation through the local environment, or "scene". A network of three cortical regions responds selectively to visual scene information, including the occipital (OPA), parahippocampal (PPA), and medial place areas (MPA) - but how this network supports visually-guided navigation is unclear. Recent evidence suggests that one region in particular, the OPA, supports visual representations for navigation, while PPA and MPA support other aspects of scene processing.
View Article and Find Full Text PDFNeurobiol Lang (Camb)
December 2023
Much of the language we encounter in our everyday lives comes in the form of conversation, yet the majority of research on the neural basis of language comprehension has used input from only one speaker at a time. Twenty adults were scanned while passively observing audiovisual conversations using functional magnetic resonance imaging. In a block-design task, participants watched 20 s videos of puppets speaking either to another puppet (the dialogue condition) or directly to the viewer (the monologue condition), while the audio was either comprehensible (played forward) or incomprehensible (played backward).
View Article and Find Full Text PDF