Publications by authors named "Emily Lombardi"

Metabolic cold adaptation, or Krogh's rule, is the controversial hypothesis that predicts a monotonically negative relationship between metabolic rate and environmental temperature for ectotherms living along thermal clines measured at a common temperature. Macrophysiological patterns consistent with Krogh's rule are not always evident in nature, and experimentally evolved responses to temperature have failed to replicate such patterns. Hence, temperature may not be the sole driver of observed variation in metabolic rate.

View Article and Find Full Text PDF

By 2100, greenhouse gases are predicted to reduce ozone and cloud cover over the tropics causing increased exposure of organisms to harmful ultraviolet-B radiation (UVBR). UVBR damages DNA and is an important modulator of immune function and disease susceptibility in humans and other vertebrates. The effect of UVBR on invertebrate immune function is largely unknown, but UVBR together with ultraviolet-A radiation impairs an insect immune response that utilizes melanin, a pigment that also protects against UVBR-induced DNA damage.

View Article and Find Full Text PDF

Froese and Pauly argue that our model is contradicted by the observation that fish reproduce before their growth rate decreases. Kearney and Jusup show that our model incompletely describes growth and reproduction for some species. Here we discuss the costs of reproduction, the relationship between reproduction and growth, and propose tests of models based on optimality and constraint.

View Article and Find Full Text PDF

Organisms use energy to grow and reproduce, so the processes of energy metabolism and biological production should be tightly bound. On the basis of this tenet, we developed and tested a new theory that predicts the relationships among three fundamental aspects of life: metabolic rate, growth, and reproduction. We show that the optimization of these processes yields the observed allometries of metazoan life, particularly metabolic scaling.

View Article and Find Full Text PDF

The oxygen and capacity-limited thermal tolerance (OCLTT) hypothesis proposes that the thermal tolerance of an animal is shaped by its capacity to deliver oxygen in relation to oxygen demand. Studies testing this hypothesis have largely focused on measuring short-term performance responses in animals under acute exposure to critical thermal maximums. The OCLTT hypothesis, however, emphasises the importance of sustained animal performance over acute tolerance.

View Article and Find Full Text PDF