J Biomed Mater Res B Appl Biomater
February 2024
This study emphasizes the development of a multifunctional biomaterial ink for wound healing constructs. The biomaterial ink benefits from Aloe vera's intrinsic biocompatible, biodegradable, antioxidant, antimicrobial, anti-inflammatory, and immunomodulatory attributes, thus alleviating the need for supplementary substances employed to combat infections and stimulate tissue regeneration. Moreover, this biomaterial ink seeks to address the scarcity of standardized printable materials possessing adequate biocompatibility and physicochemical properties, which hinder its widespread clinical adoption.
View Article and Find Full Text PDFThree dimensional printing has emerged as a widely acceptable strategy for the fabrication of mammalian cell laden constructs with complex microenvironments for tissue engineering and regenerative medicine. More recently 3D printed living materials containing microorganisms have been developed and matured into living biofilms. The potential for engineered 3D biofilms as in vitro models for biomedical applications, such as antimicrobial susceptibility testing, and environmental applications, such as bioleaching, bioremediation, and wastewater purification, is extensive but the need for an in-depth understanding of the structure-function relationship between the complex construct and the microorganism response still exists.
View Article and Find Full Text PDFHydrogels are commonly used for the 3D culture of musculoskeletal cells. Sulfated hydrogels, which have seen a growing interest over the past years, provide a microenvironment that help maintain the phenotype of chondrocytes and chondrocyte-like cells and can be used for sustained delivery of growth factors and other drugs. Sulfated hydrogels are hence valuable tools to improve cartilage and intervertebral disc tissue engineering.
View Article and Find Full Text PDFSediments collected within freshwater, estuarine and marine habitats were used to trial various chemical and physical pre-treatments to develop a systematic protocol for grain-size analysis using laser diffraction. Application of this protocol mitigates the influence of bio-physical processes that may transform grain-size distributions, enabling the characterisation and quantification of 'primary' mineral sediments across the complex freshwater-marine continuum to be more reliably assessed. Application of the protocol to two Great Barrier Reef (Australia) river catchments and their estuaries reveals the ecologically relevant <20 μm fraction comprises a larger component of exported sediment than existing methods indicate.
View Article and Find Full Text PDF