Supported by recent computational studies, there is increasing evidence that a wide range of neuronal responses can be understood as an emergent property of nonnegative sparse coding (NSC), an efficient population coding scheme based on dimensionality reduction and sparsity constraints. We review evidence that NSC might be employed by sensory areas to efficiently encode external stimulus spaces, by some associative areas to conjunctively represent multiple behaviorally relevant variables, and possibly by the basal ganglia to coordinate movement. In addition, NSC might provide a useful theoretical framework under which to understand the often complex and nonintuitive response properties of neurons in other brain areas.
View Article and Find Full Text PDFRetrosplenial cortex (RSC) is an association cortex supporting spatial navigation and memory. However, critical issues remain concerning the forms by which its ensemble spiking patterns register spatial relationships that are difficult for experimental techniques to fully address. We therefore applied an evolutionary algorithmic optimization technique to create spiking neural network models that matched electrophysiologically observed spiking dynamics in rat RSC neuronal ensembles.
View Article and Find Full Text PDF