Microfluidic technologies provide many advantages for studying differentiation of three-dimensional (3D) stem cell aggregates, including the ability to control the culture microenvironment, isolate individual aggregates for longitudinal tracking, and perform imaging-based assays. However, applying microfluidics to studying mechanisms of stem cell differentiation requires an understanding of how microfluidic culture conditions impact cell phenotypes. Conventional cell culture techniques cannot directly be applied to the microscale, as microscale culture varies from macroscale culture in multiple aspects.
View Article and Find Full Text PDFThe highly proliferative and pluripotent characteristics of embryonic stem cells engender great promise for tissue engineering and regenerative medicine, but the rapid identification and isolation of target cell phenotypes remains challenging. Therefore, the objectives of this study were to characterize cell mechanics as a function of differentiation and to employ differences in cell stiffness to select population subsets with distinct mechanical, morphological, and biological properties. Biomechanical analysis with atomic force microscopy revealed that embryonic stem cells stiffened within one day of differentiation induced by leukemia inhibitory factor removal, with a lagging but pronounced change from spherical to spindle-shaped cell morphology.
View Article and Find Full Text PDF