Background And Purpose: The purpose of this study was to compare two parent completed questionnaires, the Modified Simonds & Parraga Sleep Questionnaire (MSPSQ) and the Children's Sleep Habits Questionnaire (CSHQ), used to characterize sleep disturbances in young children with autism spectrum disorders (ASD). Both questionnaires have been used in previous work in the assessment and treatment of children with ASD and sleep disturbance.
Participants And Methods: Parents/caregivers of a sample of 124 children diagnosed with ASD with an average age of six years completed both sleep questionnaires regarding children's sleep behaviors.
Recent studies have made significant progress toward the clinical implementation of high-frequency conduction block (HFB) of peripheral nerves. However, these studies were performed in small nerves, and questions remain regarding the nature of HFB in large-diameter nerves. This study in nonhuman primates shows reliable conduction block in large-diameter nerves (up to 4.
View Article and Find Full Text PDFJ Neurosci Methods
September 2011
Direct current, DC, can be used to quickly and reversibly block activity in excitable tissue, or to quickly and reversibly increase or decrease the natural excitability of a neuronal population. However, the practical use of DC to control neuronal activity has been extremely limited due to the rapid tissue damage caused by its use. We show that a separated interface nerve electrode, SINE, is a much safer method to deliver DC to excitable tissue and may be valuable as a laboratory research tool or potentially for clinical treatment of disease.
View Article and Find Full Text PDFNerve cuff electrodes are a principle tool of basic and applied electro-neurophysiology studies and are championed for their ability to achieve good nerve recruitment with low thresholds. We describe the design and method of fabrication for a novel circumpolar peripheral nerve electrode for acute experimental use. This cylindrical cuff-style electrode provides approximately 270° of radial electrode contact with a nerve for each of an arbitrary number of contacts, has a profile that allows for simple placement and removal in an acute nerve preparation, and is designed for adjustment of the cylindrical diameter to ensure a close fit on the nerve.
View Article and Find Full Text PDFHigh-frequency alternating currents (HFAC) have proven to be a reversible and rapid method of blocking peripheral nerve conduction, holding promise for treatment of disorders associated with undesirable neuronal activity. The delivery of HFAC is characterized by a transient period of neural firing at its inception, termed the 'onset response'. The onset response is minimized for higher frequencies and higher amplitudes, but requires larger currents.
View Article and Find Full Text PDFThis study investigates a novel technique for blocking a nerve using a combination of direct and high frequency alternating currents (HFAC). HFAC can produce a fast acting and reversible conduction block, but cause intense firing at the onset of current delivery. We hypothesized that a direct current (DC) block could be used for a very brief period in combination with HFAC to block the onset firing, and thus establish a nerve conduction block which does not transmit onset response firing to an end organ.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
December 2010
The delivery of high-frequency alternating currents has been shown to produce a focal and reversible conduction block in whole nerve and is a potential therapeutic option for various diseases and disorders involving pathological or undesired neurological activity. However, delivery of high-frequency alternating current to a nerve produces a finite burst of neuronal firing, called the onset response, before the nerve is blocked. Reduction or elimination of the onset response is very important to moving this type of nerve block into clinical applications since the onset response is likely to result in undesired muscle contraction and pain.
View Article and Find Full Text PDFConduction block of peripheral nerves is an important technique for many basic and applied neurophysiology studies. To date, there has not been a technique which provides a quickly initiated and reversible "on-demand" conduction block which is both sustainable for long periods of time and does not generate activity in the nerve at the onset of the conduction block. In this study we evaluated the feasibility of a combined method of nerve block which utilizes two well established nerve blocking techniques in a rat and cat model: nerve cooling and electrical block using high frequency alternating currents (HFAC).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2010
The delivery of high frequency alternating currents (HFAC) to peripheral nerves has been shown to produce a rapid and reversible nerve conduction block at the site of the electrode, and holds therapeutic promise for diseases associated with undesired or pathological neural activity. It has been known since 1939 that the configuration of an electrode used for nerve block can impact the quality of the block, but to date no formal study of the impact of electrode design on high frequency nerve block has been performed. Using a mammalian small animal model, it is demonstrated that the contact separation distance for a bipolar nerve cuff electrode can impact two important factors related to high frequency nerve block: the amplitude of HFAC required to block the nerve (block threshold), and the degree to which the transient "onset response" which always occurs when HFAC is first applied to peripheral nerves, is present.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2010
High frequency alternating current (HFAC) waveforms reversibly block conduction in mammalian peripheral nerves. The initiation of the HFAC produces an onset response in the nerve before complete block occurs. An amplitude ramp, starting from zero amplitude, is ineffective in eliminating this onset response.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2010
The clinical use of high frequency alternating current (HFAC) to block nerve conduction in peripheral nerves is limited due to the large volley of nerve activity generated at the initiation of HFAC. This "onset response" must be characterized in order to determine if it is possible to eliminate it. In this study, preliminary experiments were conducted in an in-vivo animal model using counted cycles of HFAC to investigate and quantify the onset response.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
October 2009
Many medical conditions are characterized by undesired or pathological peripheral neurological activity. The local delivery of high-frequency alternating currents (HFAC) has been shown to be a fast acting and quickly reversible method of blocking neural conduction and may provide a treatment alternative for eliminating pathological neural activity in these conditions. This work represents the first formal study of electrode design for high-frequency nerve block, and demonstrates that the interpolar separation distance for a bipolar electrode influences the current amplitudes required to achieve conduction block in both computer simulations and mammalian whole nerve experiments.
View Article and Find Full Text PDFMany diseases are characterized by undesired or pathological neural activity. The local delivery of high-frequency currents has been shown to be an effective method for blocking neural conduction in peripheral nerves and may provide a therapy for these conditions. To date, all studies of high-frequency conduction block have utilized extraneural (cuff) electrodes to achieve conduction block.
View Article and Find Full Text PDF