Publications by authors named "Emily L Campbell"

Online and real-time analysis of a chemical process is a major analytical challenge that can drastically change the way the chemical industry or chemical research operates. With analyses, a new and powerful understanding of chemistry can be gained; however, building robust tools for long-term monitoring faces many challenges, including compensating for instrument drift, instrument replacement, and sensor or probe replacement. Accounting for these changes by recollecting calibration data and rebuilding quantification models can be costly and time-consuming.

View Article and Find Full Text PDF

The mechanism by which high concentrations (1.5 M in -dodecane) of ,-di-2-ethylhexyl-isobutyramide (DEHiBA) extracts HNO and UO(NO) is under examination. Most prior studies have examined the extractant and the mechanism at a concentration of 1.

View Article and Find Full Text PDF

Coordination of trivalent lanthanide and actinide metal ions by lipophilic diglycolamides and phosphonic acids has been proposed for their separation through extraction from aqueous nitric acid solutions. However, the nature of M coordination complexes in these combined solvent systems is not well understood, resulting in low predictability of their behavior. This work demonstrates that a combination of ,,','-tetrakis(2-ethylhexyl)diglycolamide (T2EHDGA) and weakly acidic 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) in -dodecane exhibits a complicated extraction mechanism for Eu and Am, which continuously evolves as a function of the aqueous phase acidity.

View Article and Find Full Text PDF

Expanded low-carbon baseload power production through the use of nuclear fission can be enabled by recycling long-lived actinide isotopes within the nuclear fuel cycle. This approach provides the benefits of (a) more completely utilizing the energy potential of mined uranium, (b) reducing the footprint of nuclear geological repositories, and (c) reducing the time required for the radiotoxicity of the disposed waste to decrease to the level of uranium ore from one hundred thousand years to a few hundred years. A key step in achieving this goal is the separation of long-lived isotopes of americium (Am) and curium (Cm) for recycle into fast reactors.

View Article and Find Full Text PDF

In nuclear fuel reprocessing, separating trivalent minor actinides and lanthanide fission products is extremely challenging and often necessitates tight pH control in TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) separations. In TALSPEAK and similar advanced processes, aqueous pH is one of the most important factors governing the partitioning of lanthanides and actinides between an aqueous phase containing a polyaminopolycarboxylate complexing agent and a weak carboxylic acid buffer and an organic phase containing an acidic organophosphorus extractant. Real-time pH monitoring would significantly increase confidence in the separation performance.

View Article and Find Full Text PDF