Publications by authors named "Emily Koury"

Benzimidazole (BZ) anthelmintics are among the most important treatments for parasitic nematode infections in the developing world. Widespread BZ resistance in veterinary parasites and emerging resistance in human parasites raise major concerns for the continued use of BZs. Knowledge of the mechanisms of resistance is necessary to make informed treatment decisions and circumvent resistance.

View Article and Find Full Text PDF
Article Synopsis
  • Plant-parasitic nematodes pose a significant threat to global crops, and the current move away from broad-spectrum nematicides limits farmers' control options.
  • Researchers have discovered a new compound, Cyprocide, which selectively targets and kills various types of nematodes while sparing other organisms.
  • Cyprocide is activated by specific nematode enzymes, highlighting its potential as a specialized solution to protect the food supply from nematode infestations.
View Article and Find Full Text PDF

Differences in naïve alcohol sensitivity between individuals are a strong predictor of later life alcohol use disorders (AUD). However, the genetic bases for alcohol sensitivity (beyond ethanol metabolism) and pharmacological approaches to modulate alcohol sensitivity remain poorly understood. We used a high-throughput behavioral screen to measure acute behavioral sensitivity to alcohol, a model of intoxication, in a genetically diverse set of over 150 wild strains of the nematode .

View Article and Find Full Text PDF

Benzimidazole (BZ) anthelmintics are among the most important treatments for parasitic nematode infections in the developing world. Widespread BZ resistance in veterinary parasites and emerging resistance in human parasites raise major concerns for the continued use of BZs. Knowledge of the mechanisms of resistance is necessary to make informed treatment decisions and circumvent resistance.

View Article and Find Full Text PDF

From bacterial quorum sensing to human language, communication is essential for social interactions. Nematodes produce and sense pheromones to communicate among individuals and respond to environmental changes. These signals are encoded by different types and mixtures of ascarosides, whose modular structures further enhance the diversity of this nematode pheromone language.

View Article and Find Full Text PDF

DNA double-strand breaks (DSBs) are deleterious lesions, which must be repaired precisely to maintain genomic stability. During meiosis, programmed DSBs are repaired via homologous recombination (HR) while repair using the nonhomologous end joining (NHEJ) pathway is inhibited, thereby ensuring crossover formation and accurate chromosome segregation. How DSB repair pathway choice is implemented during meiosis is unknown.

View Article and Find Full Text PDF

Accumulation of DNA-RNA hybrids in the form of R-loops can result in replication-transcription conflict that leads to the formation of DNA double strand breaks (DSBs). Using null mutants for the two Caenorhabditis elegans genes encoding for RNaseH1 and RNaseH2, we identify novel effects of R-loop accumulation in the germline. R-loop accumulation leads, as expected, to replication stress, followed by the formation of DSBs.

View Article and Find Full Text PDF

Infections by parasitic nematodes cause large health and economic burdens worldwide. We use anthelmintic drugs to reduce these infections. However, resistance to anthelmintic drugs is extremely common and increasing worldwide.

View Article and Find Full Text PDF

Akirin, a conserved metazoan protein, functions in muscle development in flies and mice. However, this was only tested in the rodent and fly model systems. Akirin was shown to act with chromatin remodeling complexes in transcription and was established as a downstream target of the NFκB pathway.

View Article and Find Full Text PDF

To maintain the integrity of the genome, meiotic DNA double strand breaks (DSBs) need to form by the meiosis-specific nuclease Spo11 and be repaired by homologous recombination. One class of products formed by recombination are crossovers, which are required for proper chromosome segregation in the first meiotic division. The synaptonemal complex (SC) is a protein structure that connects homologous chromosomes during meiotic prophase I.

View Article and Find Full Text PDF

DNA double-strand breaks (DSBs) are toxic lesions that every cell must accurately repair in order to survive. The repair of DSBs is an integral part of a cell life cycle and can lead to lethality if repaired incorrectly. Laser microirradiation is an established technique which has been used in yeast, mammalian cell culture, and cell culture to study the regulation of DSB repair.

View Article and Find Full Text PDF

Studies of the repair pathways associated with DNA double strand breaks (DSBs) are numerous, and provide evidence for cell-cycle specific regulation of homologous recombination (HR) by the regulation of its associated proteins. Laser microirradiation is a well-established method to examine in vitro kinetics of repair and allows for live-imaging of DSB repair from the moment of induction. Here we apply this method to whole, live organisms, introducing an effective system to analyze exogenous, microirradiation-induced breaks in the Caenorhabditis elegans germline.

View Article and Find Full Text PDF