Understanding how arthropod pests and their natural enemies interact in complex agroecosystems is essential for pest management programmes. Theory predicts that prey sharing a predator, such as a biological control agent, can indirectly reduce each other's density at equilibrium (apparent competition). From this premise, we (i) discuss the complexity of indirect interactions among pests in agroecosystems and highlight the importance of natural enemy-mediated indirect interactions other than apparent competition, (ii) outline factors that affect the nature of enemy-mediated indirect interactions in the field and (iii) identify the way to manipulate enemy-mediated interactions for biological control.
View Article and Find Full Text PDFThe concept of a trade-off has long played a prominent role in understanding the evolution of organismal interactions such as mutualism, parasitism, and competition. Given the complexity inherent to interactions between different evolutionary entities, ecological factors may especially limit the power of trade-off models to predict evolutionary change. Here, we use four case studies to examine the importance of ecological context for the study of trade-offs in organismal interactions: (1) resource-based mutualisms, (2) parasite transmission and virulence, (3) plant biological invasions, and (4) host range evolution in parasites and parasitoids.
View Article and Find Full Text PDF