Publications by authors named "Emily Joo"

Proteins often exist and function as part of higher-order complexes or networks. A challenge is to identify the universe of proximal and interacting partners for a given protein. We describe how the high-activity promiscuous biotin ligase called TurboID is fused to the actin-binding peptide LifeAct to label by biotinylation proteins that bind, or are in close proximity, to actin.

View Article and Find Full Text PDF

Since the discovery by Madaule and Axel in 1985 of the first Ras homologue (Rho) protein in and its human orthologue RhoB, membership in the Rho GTPase family has grown to 20 proteins, with representatives in all eukaryotic species. These GTPases are molecular switches that cycle between active (GTP bound) and inactivate (GDP bound) states. The exchange of GDP for GTP on Rho GTPases is facilitated by guanine exchange factors (GEFs).

View Article and Find Full Text PDF

Cellular cytoskeletal systems play many pivotal roles in living organisms by controlling cell shape, division, and migration, which ultimately govern morphology, physiology, and functions of animals. Although the cytoskeletal systems are distinct and play different roles, there is growing evidence that these diverse cytoskeletal systems coordinate their functions with each other. This coordination between cytoskeletal systems, often termed cytoskeletal crosstalk, has been identified when the dynamic state of one individual system affects the other system.

View Article and Find Full Text PDF

Although much is known about how individual cytoskeletal systems contribute to physiological processes such as cell migration and branching morphogenesis, little is known about how these different systems actively coordinate their functions after polymerization. Here we show that both fibroblasts and developing glands reciprocally coordinate levels of cellular contractility and microtubule acetylation. We find that this balance is achieved by interaction of the myosin phosphatase target subunit of myosin phosphatase with either myosin light chain or HDAC6, a microtubule deacetylase.

View Article and Find Full Text PDF

Mammalian septin SEPT2 belongs to a conserved family of filamentous GTPases that are associated with actin stress fibers in interphase cells and the contractile ring in dividing cells. Although SEPT2 is essential for cytokinesis, its role in this process remains undefined. Here, we report that SEPT2 directly binds nonmuscle myosin II (myosin II), and this association is important for fully activating myosin II in interphase and dividing cells.

View Article and Find Full Text PDF

The physical division of one cell into two requires the highly orchestrated separation of genetic and cytoplasmic contents during M phase of the cell cycle. Mitosis, the physical segregation of the genetic material of a cell into two daughter cells, has traditionally received more attention than cytokinesis, the partitioning of the cytoplasmic contents, yet clearly the two processes must be intimately co-ordinated and tightly regulated. While plant cells divide by the formation of a membranous cell barrier called the phragmoplast, animal cell division is largely driven by contraction of an actomyosin ring.

View Article and Find Full Text PDF