The evolution of self-fertilization is one of the most commonly traversed transitions in flowering plants, with profound implications for population genetic structure and evolutionary potential. We investigated factors influencing this transition using Witheringia solanacea, a predominantly self-incompatible (SI) species within which self-compatible (SC) genotypes have been identified. We showed that self-compatibility in this species segregates with variation at the S-locus as inherited by plants in F1 and F2 generations.
View Article and Find Full Text PDF