Publications by authors named "Emily J Girard"

Hydrogels are extensively employed in healthcare due to their adaptable structures, high water content, and biocompatibility, with FDA-approved applications ranging from spinal cord regeneration to local therapeutic delivery. However, clinical hydrogels encounter challenges related to inconsistent therapeutic exposure, unmodifiable release windows, and difficulties in subsurface polymer insertion. Addressing these issues, we engineered injectable, biocompatible hydrogels as a local therapeutic depot, utilizing poly(ethylene glycol) (PEG)-based hydrogels functionalized with bioorthogonal SPAAC handles for network polymerization and functionalization.

View Article and Find Full Text PDF
Article Synopsis
  • - TPD can effectively eliminate disease-causing proteins by engaging a cell’s protein degradation system, overcoming limitations of traditional inhibitors that typically target only one mechanism.
  • - The CYpHER technology utilizes a pH-dependent release system and a rapidly cycling transferrin receptor to enhance the delivery of therapeutic agents to surface and extracellular targets, increasing treatment potency while potentially reducing side effects.
  • - Successful application of CYpHER was demonstrated both in laboratory settings (in vitro) with specific cancer markers (EGFR and PD-L1) and in animal studies (in vivo) using a model of lung cancer driven by EGFR.
View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. To identify genes differentially required for the viability of GBM stem-like cells (GSCs), we performed functional genomic lethality screens comparing GSCs and control human neural stem cells. Among top-scoring hits in a subset of GBM cells was the F-box-containing gene , which was also predicted to be essential in ∼15% of cell lines derived from a broad range of cancers.

View Article and Find Full Text PDF

Many disease-causing proteins have multiple pathogenic mechanisms, and conventional inhibitors struggle to reliably disrupt more than one. Targeted protein degradation (TPD) can eliminate the protein, and thus all its functions, by directing a cell's protein turnover machinery towards it. Two established strategies either engage catalytic E3 ligases or drive uptake towards the endolysosomal pathway.

View Article and Find Full Text PDF

NKG2D and its ligands are critical regulators of protective immune responses controlling infections and cancer, defining a crucial immune signaling axis. Current therapeutic efforts targeting this axis almost exclusively aim at enhancing NKG2D-mediated effector functions. However, this axis can drive disease processes when dysregulated, in particular, driving stem-like cancer cell reprogramming and tumorigenesis through receptor/ligand self-stimulation on tumor cells.

View Article and Find Full Text PDF

Brain tumors are the most common solid tumor in children and the leading cause of cancer-related deaths. Over the last few years, improvements have been made in the diagnosis and treatment of children with Central Nervous System tumors. Unfortunately, for many patients with high-grade tumors, the overall prognosis remains poor.

View Article and Find Full Text PDF

Hydrogels generally have broad utilization in healthcare due to their tunable structures, high water content, and inherent biocompatibility. FDA-approved applications of hydrogels include spinal cord regeneration, skin fillers, and local therapeutic delivery. Drawbacks exist in the clinical hydrogel space, largely pertaining to inconsistent therapeutic exposure, short-lived release windows, and difficulties inserting the polymer into tissue.

View Article and Find Full Text PDF

Introduction: Ependymomas (EPN) are the third most common malignant brain cancer in children. Treatment strategies for pediatric EPN have remained unchanged over recent decades, with 10-year survival rates stagnating at just 67% for children aged 0-14 years. Moreover, a proportion of patients who survive treatment often suffer long-term neurological side effects as a result of therapy.

View Article and Find Full Text PDF

Background: Adult and pediatric tumors display stark differences in their mutation spectra and chromosome alterations. Here, we attempted to identify common and unique gene dependencies and their associated biomarkers among adult and pediatric tumor isolates using functional genetic lethal screens and computational modeling.

Methods: We performed CRISRP-Cas9 lethality screens in two adult glioblastoma (GBM) tumor isolates and five pediatric brain tumor isolates representing atypical teratoid rhabdoid tumors (ATRT), diffuse intrinsic pontine glioma, GBM, and medulloblastoma.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used advanced modeling software to predict the structure of 4,298 CDP scaffolds and identified potential CDP binders for a therapeutic target called PD-L1.
  • * A particularly effective CDP was developed that binds to PD-L1 and, when combined with another targeting agent, demonstrated superior ability to kill cancer cells and improve survival rates in mouse models compared to traditional antibody therapies.
View Article and Find Full Text PDF

Purpose: Tumor infiltration by immunosuppressive myeloid cells or tumor-associated macrophages (TAMs) contributes to tumor progression and metastasis. In contrast to their adult counterparts, higher TAM signatures do not correlate with aggressive tumor behavior in pediatric brain tumors. While prominent TAM infiltrates exist before and after radiation, the degree to which irradiated macrophages and microglia support progression or leptomeningeal metastasis remains unclear.

View Article and Find Full Text PDF

Background: Diffuse midline gliomas (DMGs), including diffuse intrinsic pontine gliomas (DIPGs), have a dismal prognosis, with less than 2% surviving 5 years postdiagnosis. The majority of DIPGs and all DMGs harbor mutations altering the epigenetic regulatory histone tail (H3 K27M). Investigations addressing DMG epigenetics have identified a few promising drugs, including the HDAC inhibitor (HDACi) panobinostat.

View Article and Find Full Text PDF

On-target, off-tissue toxicity limits the systemic use of drugs that would otherwise reduce symptoms or reverse the damage of arthritic diseases, leaving millions of patients in pain and with limited physical mobility. We identified cystine-dense peptides (CDPs) that rapidly accumulate in cartilage of the knees, ankles, hips, shoulders, and intervertebral discs after systemic administration. These CDPs could be used to concentrate arthritis drugs in joints.

View Article and Find Full Text PDF

Progenitor heterogeneity and identities underlying tumor initiation and relapse in medulloblastomas remain elusive. Utilizing single-cell transcriptomic analysis, we demonstrated a developmental hierarchy of progenitor pools in Sonic Hedgehog (SHH) medulloblastomas, and identified OLIG2-expressing glial progenitors as transit-amplifying cells at the tumorigenic onset. Although OLIG2 progenitors become quiescent stem-like cells in full-blown tumors, they are highly enriched in therapy-resistant and recurrent medulloblastomas.

View Article and Find Full Text PDF

Although a greater extent of tumor resection is important for patients' survival, complete tumor removal, especially tumor margins, remains challenging due to the lack of sensitivity and specificity of current surgical guidance techniques at the margins. Intraoperative fluorescence imaging with targeted fluorophores is promising for tumor margin delineation. To verify the tumor margins detected by the fluorescence images, it is necessary to register fluorescence with histological images, which provide the ground truth for tumor regions.

View Article and Find Full Text PDF

Brain tumors are the leading cause of cancer-related death in children. Genomic studies have provided insights into molecular subgroups and oncogenic drivers of pediatric brain tumors that may lead to novel therapeutic strategies. To evaluate new treatments, better preclinical models adequately reflecting the biological heterogeneity are needed.

View Article and Find Full Text PDF

Background/aim: Developments in imaging have improved cancer diagnosis, but identification of malignant cells during surgical resection remains a challenge. The aim of this study was to investigate the pacifastin family of peptides for novel activity targeting tumor cells and the delivery of either imaging or therapeutic agents.

Materials And Methods: Variants of pacifastin family peptides were generated, chemically modified and tested in human tumor xenografts.

View Article and Find Full Text PDF

Zinc finger domain genes comprise ~3% of the human genome, yet many of their functions remain unknown. Here we investigated roles for the vertebrate-specific BTB domain zinc finger gene ZNF131 in the context of human brain tumors. We report that ZNF131 is broadly required for Glioblastoma stem-like cell (GSC) viability, but dispensable for neural progenitor cell (NPC) viability.

View Article and Find Full Text PDF

To identify therapeutic targets for glioblastoma (GBM), we performed genome-wide CRISPR-Cas9 knockout (KO) screens in patient-derived GBM stem-like cells (GSCs) and human neural stem/progenitors (NSCs), non-neoplastic stem cell controls, for genes required for their in vitro growth. Surprisingly, the vast majority GSC-lethal hits were found outside of molecular networks commonly altered in GBM and GSCs (e.g.

View Article and Find Full Text PDF

A fundamental problem in cancer drug development is that antitumor efficacy in preclinical cancer models does not translate faithfully to patient outcomes. Much of early cancer drug discovery is performed under in vitro conditions in cell-based models that poorly represent actual malignancies. To address this inconsistency, we have developed a technology platform called CIVO, which enables simultaneous assessment of up to eight drugs or drug combinations within a single solid tumor in vivo.

View Article and Find Full Text PDF

Fluorescence molecular imaging with exogenous probes improves specificity for the detection of diseased tissues by targeting unambiguous molecular signatures. Additionally, increased diagnostic sensitivity is expected with the application of multiple molecular probes. We developed a real-time multispectral fluorescence-reflectance scanning fiber endoscope (SFE) for wide-field molecular imaging of fluorescent dye-labeled molecular probes at nanomolar detection levels.

View Article and Find Full Text PDF

During mitosis, the spindle assembly checkpoint (SAC) monitors the attachment of kinetochores (KTs) to the plus ends of spindle microtubules (MTs) and prevents anaphase onset until chromosomes are aligned and KTs are under proper tension. Here, we identify a SAC component, BuGZ/ZNF207, from an RNAi viability screen in human glioblastoma multiforme (GBM) brain tumor stem cells. BuGZ binds to and stabilizes Bub3 during interphase and mitosis through a highly conserved GLE2p-binding sequence (GLEBS) domain.

View Article and Find Full Text PDF

To identify key regulators of human brain tumor maintenance and initiation, we performed multiple genome-wide RNAi screens in patient-derived glioblastoma multiforme (GBM) stem cells (GSCs). These screens identified the plant homeodomain (PHD)-finger domain protein PHF5A as differentially required for GSC expansion, as compared with untransformed neural stem cells (NSCs) and fibroblasts. Given PHF5A's known involvement in facilitating interactions between the U2 snRNP complex and ATP-dependent helicases, we examined cancer-specific roles in RNA splicing.

View Article and Find Full Text PDF