Publications by authors named "Emily Hemann"

The sensing of nucleic acids by DEAD/H-box helicases, specifically retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), plays a critical role in inducing antiviral immunity following infection. However, this DEAD/H-box helicase family includes many additional proteins whose immune functions have not been investigated. While numerous DEAD/H-box helicases contribute to antiviral immunity, they employ diverse mechanisms beyond the direct sensing of nucleic acids.

View Article and Find Full Text PDF

Immune reactions to nanomedicines can be detrimental to the patient and compromise efficacy. However, our recent study characterizing the effects of a type III interferon (IFN-λ) response to lipid nanoparticles complexed with nucleic acids (lipoplexes) suggests that an IFN-λ pretreatment can increase tumor accumulation while decreasing off-target distribution of chemotherapeutic nanomedicines. This project provides a direct follow-up to our previously published works by clarifying 1) which cell type(s) can produce IFN-λ in response to lipoplexes and how the effects of IFN-λ may be propagated in humans.

View Article and Find Full Text PDF
Article Synopsis
  • Influenza pandemics emerge when animal viruses adapt to infect humans, and the study focuses on the role of the protein IFITM3 in this process.
  • Researchers found that mice and human cells lacking IFITM3 can be infected by low doses of avian influenza viruses that normally cannot infect them, highlighting IFITM3's importance in controlling virus infection thresholds.
  • The study suggests that deficiencies in IFITM3 may make humans more susceptible to new pandemic influenza viruses, as these deficiencies facilitate virus adaptation during interspecies transmission.
View Article and Find Full Text PDF

Optimization of protective immune responses against SARS-CoV-2 remains an urgent worldwide priority. In this regard, type III IFN (IFN-λ) restricts SARS-CoV-2 infection in vitro, and treatment with IFN-λ limits infection, inflammation, and pathogenesis in murine models. Furthermore, IFN-λ has been developed for clinical use to limit COVID-19 severity.

View Article and Find Full Text PDF
Article Synopsis
  • Influenza virus activates the inflammasome pathways in cells, which can lead to both positive and negative effects on infection outcomes.
  • The study shows that mice lacking the gasdermin D (GSDMD) protein experience less severe effects of influenza, such as less weight loss and lung damage, despite having similar levels of the virus.
  • The research highlights that GSDMD plays a role in enhancing neutrophil responses during influenza infection, which worsens inflammation and lung damage, suggesting that targeting this protein could be a potential treatment for severe influenza cases.
View Article and Find Full Text PDF

Chronic pulmonary bacterial infections and associated inflammation remain a cause of morbidity and mortality in people with cystic fibrosis (PwCF) despite new modulator therapies. Therapies targeting host factors that dampen detrimental inflammation without suppressing immune responses critical for controlling infections remain limited, while the development of lung infections caused by antimicrobial resistant bacteria is an increasing global problem, and a significant challenge in CF. Pharmacological compounds targeting the mammalian MAPK proteins MEK1 and MEK2, referred to as MEK1/2 inhibitor compounds, have potential combined anti-microbial and anti-inflammatory effects.

View Article and Find Full Text PDF

Influenza virus pandemics are caused by viruses from animal reservoirs that adapt to efficiently infect and replicate in human hosts. Here, we investigated whether Interferon-Induced Transmembrane Protein 3 (IFITM3), a host antiviral factor with known human deficiencies, plays a role in interspecies virus infection and adaptation. We found that IFITM3-deficient mice and human cells could be infected with low doses of avian influenza viruses that failed to infect WT counterparts, identifying a new role for IFITM3 in controlling the minimum infectious viral dose threshold.

View Article and Find Full Text PDF

Nanomedicines have been touted as the future of cancer therapy for decades. However, the field of tumor-targeted nanomedicine has failed to significantly advance toward becoming the primary choice for cancer intervention. One of the largest obstacles that has yet to be overcome is off-target accumulation of the nanoparticles.

View Article and Find Full Text PDF

During intracellular infection, T follicular helper (T) and T helper 1 (T1) cells promote humoral and cell-mediated responses, respectively. Another subset, CD4-cytotoxic T lymphocytes (CD4-CTLs), eliminate infected cells via functions typically associated with CD8 T cells. The mechanisms underlying differentiation of these populations are incompletely understood.

View Article and Find Full Text PDF

Influenza virus activates cellular inflammasome pathways, which can be either beneficial or detrimental to infection outcomes. Here, we investigated the role of the inflammasome-activated pore-forming protein gasdermin D (GSDMD) during infection. Ablation of GSDMD in knockout (KO) mice significantly attenuated virus-induced weight loss, lung dysfunction, lung histopathology, and mortality compared with wild type (WT) mice, despite similar viral loads.

View Article and Find Full Text PDF

Retinoic acid-inducible gene I (RIG-I) is essential for activating host cell innate immunity to regulate the immune response against many RNA viruses. We previously identified that a small molecule compound, KIN1148, led to the activation of IFN regulatory factor 3 (IRF3) and served to enhance protection against influenza A virus (IAV) A/California/04/2009 infection. We have now determined direct binding of KIN1148 to RIG-I to drive expression of IFN regulatory factor 3 and NF-κB target genes, including specific immunomodulatory cytokines and chemokines.

View Article and Find Full Text PDF

Interferon-induced transmembrane protein 3 (IFITM3) is an antiviral protein that alters cell membranes to block fusion of viruses. Conflicting reports identified opposing effects of IFITM3 on SARS-CoV-2 infection of cells, and its impact on viral pathogenesis in vivo remains unclear. Here, we show that IFITM3 knockout (KO) mice infected with SARS-CoV-2 experience extreme weight loss and lethality compared to mild infection in wild-type (WT) mice.

View Article and Find Full Text PDF

Chronic pulmonary bacterial infections and associated inflammation remain a cause of morbidity and mortality in people with cystic fibrosis (PwCF) despite new modulator therapies. Therapies targeting host factors that dampen detrimental inflammation without suppressing immune responses critical for controlling infections remain limited, while the acquisition of antibiotic resistance bacterial infections is an increasing global problem, and a significant challenge in CF. Pharmacological compounds targeting the mammalian MAPK proteins MEK1 and MEK2, referred to as MEK1/2 inhibitor compounds, have potential combined anti-microbial and anti-inflammatory effects.

View Article and Find Full Text PDF

Retinoic acid-inducible gene I-like receptors (RLRs) are cytosolic RNA sensors critical for initiation of antiviral immunity. Activation of RLRs following RNA recognition leads to production of antiviral genes and IFNs for induction of broad antiviral immunity. Although the RLRs are ubiquitously expressed, much of our understanding of these molecules comes from their study in epithelial cells and fibroblasts.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS–CoV-2) is a worldwide health concern, and new treatment strategies are needed. Targeting inflammatory innate immunity pathways holds therapeutic promise, but effective molecular targets remain elusive. Here, we show that human caspase-4 (CASP4) and its mouse homolog, caspase-11 (CASP11), are up-regulated in SARS–CoV-2 infections and that CASP4 expression correlates with severity of SARS–CoV-2 infection in humans.

View Article and Find Full Text PDF

Interferon-induced transmembrane protein 3 (IFITM3) is a host antiviral protein that alters cell membranes to block fusion of viruses. Published reports have identified conflicting pro- and antiviral effects of IFITM3 on SARS-CoV-2 in cultured cells, and its impact on viral pathogenesis remains unclear. Here, we show that IFITM3 knockout (KO) mice infected with mouse-adapted SARS-CoV-2 experienced extreme weight loss and lethality, while wild type (WT) mice lost minimal weight and recovered.

View Article and Find Full Text PDF

Background: To determine how serologic antibody testing outcome links with virus neutralization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we evaluated individuals for SARS-CoV-2 antibody level and viral neutralization.

Methods: We compared serum Ig levels across platforms of viral antigens and antibodies with 15 positive and 30 negative SARS-CoV-2 controls followed by viral neutralization assessment. We then applied these platforms to a clinically relevant cohort of 114 individuals with unknown histories of SARS-CoV-2 infection.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is causing a global pandemic, and cases continue to rise. Most infected individuals experience mildly symptomatic coronavirus disease 2019 (COVID-19), but it is unknown whether this can induce persistent immune memory that could contribute to immunity. We performed a longitudinal assessment of individuals recovered from mild COVID-19 to determine whether they develop and sustain multifaceted SARS-CoV-2-specific immunological memory.

View Article and Find Full Text PDF

The recently emerged SARS-CoV-2 virus is currently causing a global pandemic and cases continue to rise. The majority of infected individuals experience mildly symptomatic coronavirus disease 2019 (COVID-19), but it is unknown whether this can induce persistent immune memory that might contribute to herd immunity. Thus, we performed a longitudinal assessment of individuals recovered from mildly symptomatic COVID-19 to determine if they develop and sustain immunological memory against the virus.

View Article and Find Full Text PDF

The recently emerged SARS-CoV-2 virus is currently causing a global pandemic and cases continue to rise. The majority of infected individuals experience mildly symptomatic coronavirus disease 2019 (COVID-19), but it is unknown whether this can induce persistent immune memory that might contribute to herd immunity. Thus, we performed a longitudinal assessment of individuals recovered from mildly symptomatic COVID-19 to determine if they develop and sustain immunological memory against the virus.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic, caused by infection with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is having a deleterious impact on health services and the global economy, highlighting the urgent need for an effective vaccine. Such a vaccine would need to rapidly confer protection after one or two doses and would need to be manufactured using components suitable for scale up. Here, we developed an -derived replicon RNA vaccine candidate, repRNA-CoV2S, encoding the SARS-CoV-2 spike (S) protein.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2d3ccbp0jm6uh6ql0r6papo85ab3ngmo): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once