The increasing global emergence of zoonoses warrants improved awareness of activities that predispose vulnerable communities to greater risk of disease. Zoonotic disease outbreaks regularly occur within Myanmar and at its borders partly due to insufficient knowledge of behavioral risks, hindering participatory surveillance and reporting. This study employed a behavioral surveillance strategy among high-risk populations to understand the behavioral risks for zoonotic disease transmission in an effort to identify risk factors for pathogen spillover.
View Article and Find Full Text PDFAs part of a public health behavior change and communication strategy related to the identification of a novel ebolavirus in bats in Sierra Leone in 2016, a consortium of experts launched an effort to create a widely accessible resource for community awareness and education on reducing disease risk. The resulting picture book, , includes technical content developed by a consortium of experts in public health, animal health, conservation, bats, and disease ecology from 30 countries. The book has now been adapted, translated, and used in more than 20 countries in Africa and Asia.
View Article and Find Full Text PDFFront Vet Sci
January 2023
Introduction: Antimicrobial resistance (AMR) is a growing global health threat for humans and animals. Environmental contamination of antimicrobials from human and domestic animal feces has been linked to AMR in wildlife populations, including rhesus macaques. This study aimed to describe the eco-epidemiology of AMR within and species isolated from rhesus macaques.
View Article and Find Full Text PDFBackground: Interactions between humans and animals are the key elements of zoonotic spillover leading to zoonotic disease emergence. Research to understand the high-risk behaviors associated with disease transmission at the human-animal interface is limited, and few consider regional and local contexts.
Objective: This study employed an integrated behavioral-biological surveillance approach for the early detection of novel and known zoonotic viruses in potentially high-risk populations, in an effort to identify risk factors for spillover and to determine potential foci for risk-mitigation measures.
Anthropogenic land-use changes increase the frequency of interactions and habitat overlap between humans and macaques which play an important role in zoonotic disease transmission. This exploratory qualitative study aimed to examine connections between land-use change and macaque-human interactions and assess the chance of zoonotic disease transmission. We conducted ethnographic interviews and focus group discussions in Old Dhaka, Madaripur, and Chandpur, Bangladesh.
View Article and Find Full Text PDFHuman interaction with animals has been implicated as a primary risk factor for several high impact zoonoses, including many bat-origin viral diseases. However the animal-to-human spillover events that lead to emerging diseases are rarely observed or clinically examined, and the link between specific interactions and spillover risk is poorly understood. To investigate this phenomenon, we conducted biological-behavioral surveillance among rural residents in Yunnan, Guangxi, and Guangdong districts of Southern China, where we have identified a number of SARS-related coronaviruses in bats.
View Article and Find Full Text PDFBackground: Strategies are urgently needed to mitigate the risk of zoonotic disease emergence in southern China, where pathogens with zoonotic potential are known to circulate in wild animal populations. However, the risk factors leading to emergence are poorly understood, which presents a challenge in developing appropriate mitigation strategies for local communities.
Methods: Residents in rural communities of Yunnan, Guangxi and Guangdong provinces were recruited and enrolled in this study.
Bull World Health Organ
January 2017
Economically and politically disruptive disease outbreaks are a hallmark of the 21st century. Although pandemics are driven by human behaviours, current surveillance systems for identifying pandemic threats are largely reliant on the monitoring of disease outcomes in clinical settings. Standardized integrated biological-behavioural surveillance could, and should, be used in community settings to complement such clinical monitoring.
View Article and Find Full Text PDFSimian immunodeficiency virus (SIV) infection of natural hosts is characterized by nonpathogenic chronic viremia, maintenance of gastrointestinal epithelial barrier integrity, and low numbers of target cells. Assessment of cell-associated virus load in T cell subsets in multiple anatomic compartments of chronically SIV-infected sabeus African green monkeys (AGMs) revealed that gastrointestinal memory CD4(+) T lymphocytes are a major source of cell-associated virus and a significant contributor to SIV viremia in AGMs.
View Article and Find Full Text PDFGecko adhesion is expected to be temperature insensitive over the range of temperatures typically experienced by geckos. Previous work is limited and equivocal on whether this expectation holds. We tested the temperature dependence of adhesion in Tokay and Day geckos and found that clinging ability at 12 degrees C was nearly double the clinging ability at 32 degrees C.
View Article and Find Full Text PDF