Publications by authors named "Emily Garner"

Biosolids can provide a nutrient rich soil amendment, particularly for poor soils and semi-arid or drought-prone areas. However, there are concerns that sludge and biosolids could be a source of propagation and exposure to AMR determinants such as antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). To inform risk assessment efforts, a systematic literature review was performed to build a comprehensive spreadsheet database of ARB and ARG concentrations in biosolids (and some sludges specified as intended for land application), along with 69 other quantitative and qualitative meta-data fields from 68 published studies describing sampling information and processing methods that can be used for modeling purposes.

View Article and Find Full Text PDF

As water reuse applications expand, there is a need for more comprehensive means to assess water quality. Microbiome analysis could provide the ability to supplement fecal indicators and pathogen profiling toward defining a "healthy" drinking water microbiota while also providing insight into the impact of treatment and distribution. Here, we utilized 16S rRNA gene amplicon sequencing to identify signature features in the composition of microbiota across a wide spectrum of water types (potable conventional, potable reuse, and nonpotable reuse).

View Article and Find Full Text PDF
Article Synopsis
  • The study explored the behavior of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs) and found significant variation in ARG responses, as they may either decrease or increase depending on the specific plant.
  • Researchers used metagenomic sequencing on samples from 12 international WWTPs, identifying 1079 different ARGs, with overall decreases in ARG abundance observed at most sites, except for one where 40% of ARGs increased.
  • The findings suggest that while WWTPs generally reduce antibiotic resistance loads, the increase in mobile genetic elements during treatment does not necessarily correlate with more transmissible ARGs, indicating a need for better wastewater surveillance strategies.
View Article and Find Full Text PDF

Water reuse is an essential strategy for reducing water demand from conventional sources, alleviating water stress, and promoting sustainability, but understanding the effectiveness of associated treatment processes as barriers to the spread of antibiotic resistance is an important consideration to protecting human health. We comprehensively evaluated the reduction of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in two field-operational water reuse systems with distinct treatment trains, one producing water for indirect potable reuse (ozone/biologically-active carbon/granular activated carbon) and the other for non-potable reuse (denitrification-filtration/chlorination) using metagenomic sequencing and culture. Relative abundances of total ARGs/clinically-relevant ARGs and cultured ARB were reduced by several logs during primary and secondary stages of wastewater treatment, but to a lesser extent during the tertiary water reuse treatments.

View Article and Find Full Text PDF

Escherichia coli has been widely used as a fecal indicator bacterium (FIB) for monitoring water quality in drinking water sources and recreational water. However, fecal contamination sources remain difficult to identify and mitigate, as millions of cases of infectious diseases are reported yearly due to swimming and bathing in recreational water. The objective of this study was to apply molecular techniques for microbial source tracking (MST) to identify sources of fecal contamination in a representative mixed land-use watershed located in the Appalachian Mountains of the United States of America (USA).

View Article and Find Full Text PDF

Antibiotic resistance is one of the greatest threats to global human and animal health of our time. Municipal wastewater has been identified as a hotspot of antibiotic resistance contamination to water bodies. However, there are numerous potential antibiotic resistant pathogens and their associated antibiotic resistance genes (ARGs), making it difficult to implement routine monitoring that addresses the breadth of the problem.

View Article and Find Full Text PDF

Wastewater-based surveillance (WBS) for disease monitoring is highly promising but requires consistent methodologies that incorporate predetermined objectives, targets, and metrics. Herein, we describe a comprehensive metagenomics-based approach for global surveillance of antibiotic resistance in sewage that enables assessment of 1) which antibiotic resistance genes (ARGs) are shared across regions/communities; 2) which ARGs are discriminatory; and 3) factors associated with overall trends in ARGs, such as antibiotic concentrations. Across an internationally sourced transect of sewage samples collected using a centralized, standardized protocol, ARG relative abundances (16S rRNA gene-normalized) were highest in Hong Kong and India and lowest in Sweden and Switzerland, reflecting national policy, measured antibiotic concentrations, and metal resistance genes.

View Article and Find Full Text PDF

In recent years, drinking water-associated pathogens that can cause infections in immunocompromised or otherwise susceptible individuals (henceforth referred to as DWPI), sometimes referred to as opportunistic pathogens or opportunistic premise plumbing pathogens, have received considerable attention. DWPI research has largely been conducted by experts focusing on specific microorganisms or within silos of expertise. The resulting mitigation approaches optimized for a single microorganism may have unintended consequences and trade-offs for other DWPI or other interests (e.

View Article and Find Full Text PDF

Risk assessment is critical for identifying target concentrations of antibiotic resistant pathogens necessary for mitigating potential harmful exposures associated with water reuse. However, there is currently limited available data characterizing the concentrations of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in recycled water to support robust efforts at risk assessment. The objective of this systematic review was to identify and synthesize the existing literature documenting the presence and abundance of ARB and ARGs in recycled water.

View Article and Find Full Text PDF

This study explicated the functional activities of microorganisms and their interrelationships under four previously reported iron reducing conditions to identify critical factors that governed the performance of these novel iron-dosed anaerobic biological wastewater treatment processes. Various iron-reducing bacteria (FeRB) and sulfate reducing bacteria (SRB) were identified as the predominant species that concurrently facilitated organics oxidation and the main contributors to removal of organics. The high organic contents of wastewater provided sufficient electron donors for active growth of both FeRB and SRB.

View Article and Find Full Text PDF

Wastewater treatment plants (WWTPs) receive a confluence of sewage containing antimicrobials, antibiotic resistant bacteria, antibiotic resistance genes (ARGs), and pathogens and thus are a key point of interest for antibiotic resistance surveillance. WWTP monitoring has the potential to inform with respect to the antibiotic resistance status of the community served as well as the potential for ARGs to escape treatment. However, there is lack of agreement regarding suitable sampling frequencies and monitoring targets to facilitate comparison within and among individual WWTPs.

View Article and Find Full Text PDF

Background: Research is needed to delineate the relative and combined effects of different antibiotic administration and manure management practices in either amplifying or attenuating the potential for antibiotic resistance to spread. Here, we carried out a comprehensive parallel examination of the effects of small-scale (> 55 °C × 3 days) static and turned composting of manures from dairy and beef cattle collected during standard antibiotic administration (cephapirin/pirlimycin or sulfamethazine/chlortetracycline/tylosin, respectively), versus from untreated cattle, on "resistomes" (total antibiotic resistance genes (ARGs) determined via shotgun metagenomic sequencing), bacterial microbiota, and indicator ARGs enumerated via quantitative polymerase chain reaction. To gain insight into the role of the thermophilic phase, compost was also externally heated to > 55 °C × 15 days.

View Article and Find Full Text PDF

Maria made a landfall in Puerto Rico on September 20, 2017 as a category 4 hurricane, causing severe flooding, widespread electricity outages, damage to infrastructure, and interruptions in water and wastewater treatment. Small rural community water systems face unique challenges in providing drinking water, which intensify after natural disasters. The purpose of this study was to evaluate the functionality of six very small rural public water systems and one large regulated system in Puerto Rico six months after Maria and survey a broad sweep of fecal, zoonotic, and opportunistic pathogens from the source to tap.

View Article and Find Full Text PDF

The emergence of next generation sequencing (NGS) is revolutionizing the potential to address complex microbiological challenges in the water industry. NGS technologies can provide holistic insight into microbial communities and their functional capacities in water and wastewater systems, thus eliminating the need to develop a new assay for each target organism or gene. However, several barriers have hampered wide-scale adoption of NGS by the water industry, including cost, need for specialized expertise and equipment, challenges with data analysis and interpretation, lack of standardized methods, and the rapid pace of development of new technologies.

View Article and Find Full Text PDF

Comprehensive surveillance approaches are needed to assess sources, clinical relevance, and mobility of antibiotic resistance genes (ARGs) in watersheds. Here, we examined metrics derived from shotgun metagenomic sequencing and relationship to human fecal markers (HFMs; crAssphage, enterococci) and anthropogenic antibiotic resistance markers (AARMs; I1, 1) in three distinct Puerto Rican watersheds as a function of adjacent land use and wastewater treatment plant (WWTP) input 6 months after Hurricane Maria, a category V storm. Relative abundance and diversity of total ARGs increased markedly downstream of WWTP inputs, with ARGs unique to WWTP and WWTP-impacted river samples predominantly belonging to the aminoglycoside and β-lactam resistance classes.

View Article and Find Full Text PDF

Community-acquired multidrug resistant (MDR-Ent) infections continue to increase in the United States. In prior studies, we identified neighboring regions in Chicago, Illinois, where children have 5 to 6 times greater odds of MDR-Ent infections. To prevent community spread of MDR-Ent, we need to identify the MDR-Ent reservoirs.

View Article and Find Full Text PDF

Type 1 secretion systems (T1SSs) are broadly distributed among bacteria and translocate effectors with diverse function across the bacterial cell membrane. Legionella pneumophila, the species most commonly associated with Legionellosis, encodes a T1SS at the lssXYZABD locus which is responsible for the secretion of the virulence factor RtxA. Many investigations have failed to detect lssD, the gene encoding the membrane fusion protein of the RtxA T1SS, in non-pneumophila Legionella, which has led to the assumption that this system is a virulence factor exclusively possessed by L.

View Article and Find Full Text PDF

During the water crisis in Flint, Michigan, USA (2014-2015), 2 outbreaks of Legionnaires' disease occurred in Genesee County, Michigan. We compared whole-genome sequences of 10 clinical Legionella pneumophila isolates submitted to a laboratory in Genesee County during the second outbreak with 103 water isolates collected the following year. We documented a genetically diverse range of L.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is one of the greatest threats faced by humankind. The development of resistance in clinical and hospital settings has been well documented ever since the initial discovery of penicillin and the subsequent introduction of sulfonamides as clinical antibiotics. In contrast, the environmental (i.

View Article and Find Full Text PDF

Antimicrobial resistance is a worldwide problem that is both pressing and challenging due to the rate at which it is spreading, and the lack of understanding of the mechanisms that link human, animal and environmental sources contributing to its proliferation. One knowledge gap that requires immediate attention is the significance of antimicrobial residues and other pharmaceuticals that are being discharged from wastewater treatment plants (WWTPs) on the dissemination of antimicrobial resistance in the environment. In this work we provide an approach to develop a harmonized analytical method for 8 classes of antimicrobials and other pharmaceuticals that can be used for global monitoring in wastewater and receiving waters.

View Article and Find Full Text PDF

Little is known about how introducing recycled water intended for direct potable reuse (DPR) into distribution systems and premise plumbing will affect water quality at the point of use, particularly with respect to effects on microbial communities and regrowth. The examination of potential growth of opportunistic pathogens (OPs) and spread of antibiotic resistance genes (ARGs), each representing serious and growing public health concerns, by introducing DPR water has not previously been evaluated. In this study, the impact of blending purified DPR water with traditional drinking water sources was investigated with respect to treatment techniques, blending location, and blending ratio.

View Article and Find Full Text PDF

Need for global water security has spurred growing interest in wastewater reuse to offset demand for municipal water. While reclaimed (i.e.

View Article and Find Full Text PDF

Water reclamation provides a valuable resource for meeting nonpotable water demands. However, little is known about the potential for wastewater reuse to disseminate antibiotic resistance genes (ARGs). Here, samples were collected seasonally in 2014-2015 from four U.

View Article and Find Full Text PDF

Manure treatment technologies are rapidly developing to minimize eutrophication of surrounding environments and potentially decrease the introduction of antibiotics and antibiotic resistant genes (ARGs) into the environment. While laboratory and pilot-scale manure treatment systems boast promising results, antibiotic and ARG removals in full-scale systems receiving continuous manure input have not been evaluated. The effect of treatment on ARGs is similarly lacking.

View Article and Find Full Text PDF