Publications by authors named "Emily Fray"

While the benefits of early antiretroviral therapy (ART) initiation in perinatally infected infants are well documented, early initiation is not always possible in postnatal pediatric HIV infections. The timing of ART initiation is likely to affect the size of the latent viral reservoir established, as well as the development of adaptive immune responses, such as the generation of neutralizing antibody responses against the virus. How these parameters impact the ability of infants to control viremia and the time to viral rebound after ART interruption is unclear and has never been modeled in infants.

View Article and Find Full Text PDF

The presence of antibodies against HIV in infected children is associated with a greater capacity to control viremia in the absence of therapy. While the benefits of early antiretroviral treatment (ART) in infants are well documented, early ART may interfere with the development of antibody responses. In contrast to adults, early treated children lack detectable HIV-specific antibodies, suggesting a fundamental difference in HIV pathogenesis.

View Article and Find Full Text PDF

Viral dynamics of acute HIV infection and HIV rebound following suspension of antiretroviral therapy may be qualitatively similar but must differ given, for one, development of adaptive immune responses. Understanding the differences of acute HIV infection and viral rebound dynamics in pediatric populations may provide insights into the mechanisms of viral control with potential implications for vaccine design and the development of effective targeted therapeutics for infants and children. Mathematical models have been a crucial tool to elucidate the complex processes driving viral infections within the host.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on overcoming the challenge of eradicating the viral reservoir to find a clinical cure for HIV-1 by using a combination of N-803 and broadly neutralizing antibodies (bNAbs) in rhesus macaques that were previously treated with antiretroviral therapy (ART).
  • Researchers found that while the treatment induced some immune activation and transient viral levels, it did not significantly lower the viral reservoir. However, about 70% of treated macaques achieved sustained control of the virus after stopping ART.
  • The success of viral control was linked to changes in CD8 T cells induced by the combination treatment, suggesting that eliminating the viral reservoir may not be necessary for long-term remission
View Article and Find Full Text PDF
Article Synopsis
  • HIV can hide in a dormant form in special immune cells called CD4 T cells, making it hard to completely get rid of it even with treatment.
  • Scientists studied the genetic differences of HIV in monkeys to better understand this hidden virus and found two types of cells: some that live a short time and some that live a long time.
  • The research showed that the short-lived cells had more recent versions of the virus, while the long-lived cells had older versions, helping to explain why there was confusion about how and when HIV hides in the body.
View Article and Find Full Text PDF

The latent reservoir for HIV-1 in resting CD4 T cells persists despite antiretroviral therapy (ART) and precludes cure. Reservoir-targeting interventions are evaluated in ART-treated macaques infected with simian immunodeficiency virus (SIV) or simian-human immunodeficiency virus (SHIV). Efficacy is determined by reservoir measurements before and after the intervention.

View Article and Find Full Text PDF

While the benefits of early antiretroviral therapy (ART) initiation in perinatally infected infants are well documented, early ART initiation is not always possible in postnatal pediatric HIV infections, which account for the majority of pediatric HIV cases worldwide. The timing of onset of ART initiation is likely to affect the size of the latent viral reservoir established, as well as the development of adaptive immune responses, such as the generation of neutralizing antibody responses against the virus. How these parameters impact the ability of infants to control viremia and the time to viral rebound after ART interruption is unclear.

View Article and Find Full Text PDF

HIV-1 persists in a latent reservoir in resting CD4+ T cells despite antiretroviral therapy (ART). The reservoir decays slowly over the first 7 years of ART (t1/2 = 44 months). However, whether decay continues with long-term ART is unclear.

View Article and Find Full Text PDF

Allogeneic hematopoietic stem cell transplantation (alloHSCT) from donors lacking C-C chemokine receptor 5 (CCR5) can cure HIV, yet mechanisms remain speculative. To define how alloHSCT mediates HIV cure, we performed MHC-matched alloHSCT in SIV, anti-retroviral therapy (ART)-suppressed Mauritian cynomolgus macaques (MCMs) and demonstrated that allogeneic immunity was the major driver of reservoir clearance, occurring first in peripheral blood, then peripheral lymph nodes, and finally in mesenteric lymph nodes draining the gastrointestinal tract. While allogeneic immunity could extirpate the latent viral reservoir and did so in two alloHSCT-recipient MCMs that remained aviremic >2.

View Article and Find Full Text PDF
Article Synopsis
  • The study looked at how HIV-1-infected cells break down over time, especially during treatment to control the virus.
  • Researchers tracked these cells in monkeys for 4 years while they received treatment, finding different phases of decay in the infected cells.
  • The results showed that the treatment worked well and that some cells can still persist even after the initial infection, indicating virus changes over time during the treatment.
View Article and Find Full Text PDF

Persistence of the human immunodeficiency virus type-1 (HIV-1) latent reservoir in infected individuals remains a problem despite fully suppressive antiretroviral therapy (ART). While reservoir formation begins during acute infection, the mechanisms responsible for its establishment remain unclear. CD8 T cells are important during the initial control of viral replication.

View Article and Find Full Text PDF

The latent viral reservoir is the critical barrier for developing an HIV-1 cure. Previous studies have shown that therapeutic vaccination or broadly neutralizing antibody (bNAb) administration, together with a Toll-like receptor 7 (TLR7) agonist, enhanced virologic control or delayed viral rebound, respectively, following discontinuation of antiretroviral therapy (ART) in SIV- or SHIV-infected rhesus macaques. Here we show that the combination of active and passive immunization with vesatolimod may lead to higher rates of post-ART virologic control compared to either approach alone.

View Article and Find Full Text PDF

Developing an intervention that results in virologic control following discontinuation of antiretroviral therapy (ART) is a major objective of HIV-1 cure research. In this study, we investigated the therapeutic efficacy of a vaccine consisting of adenovirus serotype 26 (Ad26) and modified vaccinia Ankara (MVA) with or without an SIV Envelope (Env) gp140 protein with alum adjuvant in combination with the TLR7 agonist vesatolimod (GS-9620) in 36 ART-suppressed, SIVmac251-infected rhesus macaques. Ad26/MVA therapeutic vaccination led to robust humoral and cellular immune responses, and the Env protein boost increased antibody responses.

View Article and Find Full Text PDF

HIV-1 infection is incurable due to the persistence of the virus in a latent reservoir of resting memory CD4+ T cells. “Shock-and-kill” approaches that seek to induce HIV-1 gene expression, protein production, and subsequent targeting by the host immune system have been unsuccessful due to a lack of effective latency-reversing agents (LRAs) and kill strategies. In an effort to develop reagents that could be used to promote killing of infected cells, we constructed T cell receptor (TCR)-mimic antibodies to HIV-1 peptide-major histocompatibility complexes (pMHC).

View Article and Find Full Text PDF

The establishment of a long-lived viral reservoir is the key obstacle for achieving an HIV-1 cure. However, the anatomic, virologic, and immunologic features of the viral reservoir in tissues during antiretroviral therapy (ART) remain poorly understood. Here we present a comprehensive necroscopic analysis of the SIV/SHIV viral reservoir in multiple lymphoid and non-lymphoid tissues from SIV/SHIV-infected rhesus macaques suppressed with ART for one year.

View Article and Find Full Text PDF

Mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1) continues to cause new pediatric cases of infection through breastfeeding, a setting where it is not always possible to initiate early antiretroviral therapy (ART). Without novel interventions that do not rely on daily ART, HIV-1-infected children face lifelong medications to control infection. A detailed analysis of virus persistence following breast milk transmission of HIV-1 and ART has not been performed.

View Article and Find Full Text PDF

HIV-1 latency is a major barrier to cure. Identification of small molecules that destabilize latency and allow immune clearance of infected cells could lead to treatment-free remission. In vitro models of HIV-1 latency involving cell lines or primary cells have been developed for characterization of HIV-1 latency and high-throughput screening for latency-reversing agents (LRAs).

View Article and Find Full Text PDF

Evaluation of HIV cure strategies is complicated by defective proviruses that persist in ART-treated patients but are irrelevant to cure. Non-human primates (NHP) are essential for testing cure strategies. However, the persisting proviral landscape in ART-treated NHPs is uncharacterized.

View Article and Find Full Text PDF

A stable latent reservoir for HIV-1 in resting CD4 T cells is the principal barrier to a cure. Curative strategies that target the reservoir are being tested and require accurate, scalable reservoir assays. The reservoir was defined with quantitative viral outgrowth assays for cells that release infectious virus after one round of T cell activation.

View Article and Find Full Text PDF