Publications by authors named "Emily Franklin"

Adolescence is a fundamental period for female athletes to develop athletic performance, mitigate injury risk, and gain collegiate sport scholarships, but there is also a high incidence of sport-related injuries. Physical profiling and athlete screening can support the individualisation of training programmes; however, there is a lack of data pertaining to the reliability of athletic performance and injury surrogate measures in adolescent female athletes. The aim of this study was to quantify the between-session reliability of an athletic performance and injury mitigation testing battery in female adolescent athletes.

View Article and Find Full Text PDF

The chemical composition of incense-generated organic aerosol in residential indoor air has received limited attention in Western literature. In this study, we conducted incense burning experiments in a single-family California residence during vacancy. We report the chemical composition of organic fine particulate matter (PM), associated emission factors (EFs), and gas-particle phase partitioning for indoor semivolatile organic compounds (SVOCs).

View Article and Find Full Text PDF

Urbanization and fires perturb the quantities and composition of fine organic aerosol in the central Amazon, with ramifications for radiative forcing and public health. These disturbances include not only direct emissions of particulates and secondary organic aerosol (SOA) precursors but also changes in the pathways through which biogenic precursors form SOA. The composition of ambient organic aerosol is complex and incompletely characterized, encompassing millions of potential structures relatively few of which have been synthesized and characterized.

View Article and Find Full Text PDF

The organic composition of coastal sea spray aerosol is important for both atmospheric chemistry and public health but remains poorly characterized. Coastal waters contain an organic material derived from both anthropogenic processes, such as wastewater discharge, and biological processes, including biological blooms. Here, we probe the chemical composition of the organic fraction of sea spray aerosol over the course of the 2019 SeaSCAPE mesocosm experiment, in which a phytoplankton bloom was facilitated in natural coastal water from La Jolla, California.

View Article and Find Full Text PDF

To elucidate the seawater biological and physicochemical factors driving differences in organic composition between supermicron and submicron sea spray aerosol (SSA and SSA), carbon isotopic composition (δC) measurements were performed on size-segregated, nascent SSA collected during a phytoplankton bloom mesocosm experiment. The δC measurements indicate that SSA contains a mixture of particulate and dissolved organic material in the bulk seawater. After phytoplankton growth, a greater amount of freshly produced carbon was observed in SSA with the proportional contribution being modulated by bacterial activity, emphasizing the importance of the microbial loop in controlling the organic composition of SSA.

View Article and Find Full Text PDF
Article Synopsis
  • Marine aerosols play a significant role in climate change by interacting with solar radiation and clouds, yet their production and composition are influenced by biological activity and seawater chemistry.
  • The Sea Spray Chemistry and Particle Evolution (SeaSCAPE) study utilized a modified wave channel for large-scale experiments to isolate marine systems and investigate how biological processes impact the generation of aerosols and volatile organic compounds.
  • Key findings from the SeaSCAPE campaign included insights into phytoplankton dynamics, aerosol aging processes, and the enhanced understanding of how marine biology interacts with atmospheric chemistry to influence climate-related aerosol properties.
View Article and Find Full Text PDF

Organic emissions from coastal waters play an important but poorly understood role in atmospheric chemistry in coastal regions. A mesocosm experiment focusing on facilitated biological blooms in coastal seawater, SeaSCAPE (Sea Spray Chemistry and Particle Evolution), was performed to study emission of volatile gases, primary sea spray aerosol, and formation of secondary marine aerosol as a function of ocean biological and chemical processes. Here, we report observations of aerosol-phase benzothiazoles in a marine atmospheric context with complementary measurements of dissolved-phase benzothiazoles.

View Article and Find Full Text PDF

Current methods for detecting mites in mouse colonies have limitations in terms of cost, accuracy, and throughput. To address these limitations, we developed PCR assays to detect in fecal samples. Using a newly generated ribosomal RNA sequence of (MC28S), we developed PCR and qPCR assays capable of detecting mites or eggs ingested during grooming.

View Article and Find Full Text PDF

Transcription is the first and most heavily regulated step in gene expression. Sigma (σ) factors are general transcription factors that reversibly bind RNA polymerase (RNAP) and mediate transcription of all genes in bacteria. σ Factors play 3 major roles in the RNA synthesis initiation process: they (i) target RNAP holoenzyme to specific promoters, (ii) melt a region of double-stranded promoter DNA and stabilize it as a single-stranded open complex, and (iii) interact with other DNA-binding transcription factors to contribute complexity to gene expression regulation schemes.

View Article and Find Full Text PDF

DSL ligands promote proteolysis of the Notch receptor, to release active Notch intracellular domain (N(ICD)). Conversely, the E3 ubiquitin ligase Deltex can activate ligand-independent Notch proteolysis and signaling. Here we show that Deltex effects require endocytic trafficking by HOPS and AP-3 complexes.

View Article and Find Full Text PDF

Sequential activation of caspases is critical for the execution of apoptosis. Recent evidence suggests caspase 2 is a significant upstream caspase capable of initiating mitochondrial events, such as the release of cytochrome c. In particular, in vitro studies using recombinant proteins have shown that cleaved caspase 2 can induce mitochondrial outer membrane permeabilization directly or by cleaving the BH3-only protein BID (BH3 interacting domain death agonist).

View Article and Find Full Text PDF