The mitochondrial uniporter (MCU) Ca ion channel represents the primary means for Ca uptake by mitochondria. Mitochondrial matrix Ca plays critical roles in mitochondrial bioenergetics by impinging upon respiration, energy production and flux of biochemical intermediates through the TCA cycle. Inhibition of MCU in oncogenic cell lines results in an energetic crisis and reduced cell proliferation unless media is supplemented with nucleosides, pyruvate or α-KG.
View Article and Find Full Text PDFThe mitochondrial uniporter (MCU) Ca ion channel represents the primary means for Ca uptake into mitochondria. Here we employed and models with MCU genetically eliminated to understand how MCU contributes to tumor formation and progression. Transformation of primary fibroblasts was associated with increased MCU expression, enhanced mitochondrial Ca uptake, suppression of inactivating-phosphorylation of pyruvate dehydrogenase, a modest increase of basal mitochondrial respiration and a significant increase of acute Ca -dependent stimulation of mitochondrial respiration.
View Article and Find Full Text PDFThis study compares the lipid composition, including individual phospholipid molecular species of solubilized nAChR detergent complexes (nAChR-DCs) with those of the bulk lipids from their source, Torpedo californica (Tc) electric tissue. This lipidomic analysis revealed seventy-seven (77) phospholipid species in the Tc tissue. Analysis of affinity-purified nAChR-DCs prepared with C-12 to C-16 phospholipid analog detergents alkylphosphocholine (FC) and lysofoscholine (LFC) demonstrated that nAChR-DCs prepared with FC12, LFC14, and LFC16 contained >60 phospholipids/nAChR, which was more than twice of those prepared with FC14, FC16, and LFC12.
View Article and Find Full Text PDF