Publications by authors named "Emily F Stone"

Simple models of short term synaptic plasticity that incorporate facilitation and/or depression have been created in abundance for different synapse types and circumstances. The analysis of these models has included computing mutual information between a stochastic input spike train and some sort of representation of the postsynaptic response. While this approach has proven useful in many contexts, for the purpose of determining the type of process underlying a stochastic output train, it ignores the ordering of the responses, leaving an important characterizing feature on the table.

View Article and Find Full Text PDF

Neurons in a micro-circuit connected by chemical synapses can have their connectivity affected by the prior activity of the cells. The number of synapses available for releasing neurotransmitter can be decreased by repetitive activation through depletion of readily releasable neurotransmitter (NT), or increased through facilitation, where the probability of release of NT is increased by prior activation. These competing effects can create a complicated and subtle range of time-dependent connectivity.

View Article and Find Full Text PDF

Vector-borne diseases represent a threat to human and wildlife populations and mathematical models provide a means to understand and control epidemics involved in complex host-vector systems. The disease model studied here is a host-vector system with a relapsing class of host individuals, used to investigate tick-borne relapsing fever (TBRF). Equilibrium analysis is performed for models with increasing numbers of relapses and multiple hosts and the disease reproduction number, R0, is generalized to establish relationships with parameters that would result in the elimination of the disease.

View Article and Find Full Text PDF

Parvalbumin-positive basket cells (PV BCs) of the CA1 hippocampus are active participants in theta (5-12 Hz) and gamma (20-80 Hz) oscillations in vivo. When PV BCs are driven at these frequencies in vitro, inhibitory postsynaptic currents (IPSCs) in synaptically connected CA1 pyramidal cells exhibit paired-pulse depression (PPD) and multiple-pulse depression (MPD). Moreover, PV BCs express presynaptic muscarinic acetylcholine receptors (mAChRs) that may be activated by synaptically released acetylcholine during learning behaviors in vivo.

View Article and Find Full Text PDF

A prominent aqueous cavity is formed by the junction of three identical subunits in the excitatory amino acid transporter (EAAT) family. To investigate the effect of this structure on the interaction of ligands with the transporter, we recorded currents in voltage-clamped Xenopus oocytes expressing EAATs and used concentration jumps to measure binding and unbinding rates of a high-affinity aspartate analog that competitively blocks transport (β-2-fluorenyl-aspartylamide; 2-FAA). The binding rates of the blocker were approximately one order of magnitude slower than l-Glu and were not significantly different for EAAT1, EAAT2, or EAAT3, but 2-FAA exhibited higher affinity for the neuronal transporter EAAT3 as a result of a slower dissociation rate.

View Article and Find Full Text PDF

Glutamate transporters have a homotrimeric subunit structure with a large central water-filled cavity that extends partially into the plane of the lipid bilayer (Yernool et al., 2004). In addition to uptake of glutamate, the transporters also mediate a chloride conductance that is increased in the presence of substrate.

View Article and Find Full Text PDF