Poly-ADP Ribose Polymerase (PARP) targeted therapy is clinically approved for the treatment of homologous recombination (HR) repair deficient tumors. The remarkable success of this therapy in the treatment of HR repair deficient cancers has not translated to HR-proficient cancers. Our studies identify the novel role of non-receptor lymphocyte-specific protein tyrosine kinase (LCK) in the regulation of HR repair in endometrioid epithelial ovarian cancer (eEOC) model.
View Article and Find Full Text PDFPurpose Of Review: We review the emerging evidence regarding the relationship between the microbiota of the gastrointestinal and female reproductive tracts and gynecologic cancer.
Recent Findings: The microbiome has essential roles in maintaining health. In recent years, the microbiota of the gastrointestinal and female reproductive tracts have been linked to many diseases, including gynecologic cancer.
The newly established CD3FLAG-mIR transgenic mouse model on a C57Bl/6 background has a FLAG tag on the mouse Insulin Receptor (mIR), specifically on T cells, as the FLAG-tagged mIR gene was engineered behind CD3 promoter and enhancer. The IR is a chemotactic molecule for insulin and the Flag-tagged mIR T cells in the BL/6-CD3FLAGmIR transgenic mice can migrate into the pancreas, as shown by immunofluorescent staining. While the transgenic mice do not become diabetic, there are phenotypic and metabolic changes in the islets.
View Article and Find Full Text PDFBackground: Ovarian cancer is the most fatal gynecologic malignancy in the United States. While chemotherapy is effective in the vast majority of ovarian cancer patients, recurrence and resistance to standard systemic therapy is nearly inevitable. We discovered that activation of the non-receptor tyrosine kinase Lymphocyte Cell-Specific Protein-Tyrosine Kinase (LCK) promoted cisplatin resistance.
View Article and Find Full Text PDFInsulin receptor (IR) expression on the T cell surface can indicate an activated state; however, the IR is also chemotactic, enabling T cells with high IR expression to physically move toward insulin. In humans with type 1 diabetes (T1D) and the NOD mouse model, a T cell-mediated autoimmune destruction of insulin-producing pancreatic β cells occurs. In previous work, when purified IR and IR T cells were sorted from diabetic NOD mice and transferred into irradiated nondiabetic NOD mice, only those that received IR T cells developed insulitis and diabetes.
View Article and Find Full Text PDFEndometriosis is a leading cause of pelvic pain and infertility. It is defined by the presence of endometrial tissue in extrauterine locations. The development of novel therapies and diagnostic tools for endometriosis has been limited due in part to challenges in studying the disease.
View Article and Find Full Text PDFEpithelial ovarian cancer (EOC) is a leading cause of cancer death in women. Standard of care treatment has remained platinum-containing cytotoxic chemotherapy for over three decades. Among the central challenges in treating ovarian CA are disease recurrence and the development of chemoresistance.
View Article and Find Full Text PDFObjective: To evaluate intraperitoneal (IP) tumor engraftment, metastasis and growth in a pre-clinical murine epithelial ovarian cancer (EOC) model using both transabdominal ultrasound (TAUS) and bioluminescence in vivo imaging system (IVIS).
Methods: Ten female C57Bl/6J mice at six weeks of age were included in this study. Five mice underwent IP injection of 5x106 ID8-luc cells (+ D- luciferin) and the remaining five mice underwent IP injection of ID8-VEGF cells.
Epigenetic modifications are known to play critical roles in the expression of genes related to differentiation and dedifferentiation. Histone lysine demethylase KDM5B (PLU-1) catalyzes the demethylation of histone H3 on Lys 4 (H3K4), which results in the repression of gene expression. KDM5B is involved in regulation of luminal and basal cell specific gene expression in breast cancers.
View Article and Find Full Text PDFBreast cancer is the most prevalent malignancy and second leading cause of death in women worldwide, with hormone receptor-positive luminal breast cancers being the most widespread subtype. While these tumors are generally amenable to endocrine therapy, cellular heterogeneity and acquired ability of tumor cells to undergo cell state switching makes these populations difficult to be fully targeted and eradicated through conventional methods. We have leveraged a quality-by-design (QbD) approach that integrates biological responses with predictive mathematical modeling to identify key combinations of commercially available drugs to induce estrogen receptor expression for therapeutic targeting.
View Article and Find Full Text PDFCarcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance and mediating suppression of fatty acid synthase activity. Feeding C57BL/6J male mice with a high-fat (HF) diet for 3-4 weeks triggered a >60% decrease in hepatic CEACAM1 levels to subsequently impair insulin clearance and cause systemic insulin resistance and hepatic steatosis. This study aimed at investigating whether lipolysis drives reduction in hepatic CEACAM1 and whether this constitutes a key mechanism leading to diet-induced metabolic abnormalities.
View Article and Find Full Text PDFCEACAM1 promotes insulin extraction, an event that occurs mainly in liver. Phenocopying global Ceacam1 null mice (Cc1(-/-) ), C57/BL6J mice fed a high-fat (HF) diet exhibited reduced hepatic CEACAM1 levels and impaired insulin clearance, followed by hyperinsulinemia, insulin resistance, and visceral obesity. Conversely, forced liver-specific expression of CEACAM1 protected insulin sensitivity and energy expenditure, and limited gain in total fat mass by HF diet in L-CC1 mice.
View Article and Find Full Text PDF