Alternative fuel sources, such as hydrogen-enriched natural gas (HENG), are highly sought after by governments globally for lowering carbon emissions. Consequently, the recognition of hydrogen as a valuable zero-emission energy carrier has increased, resulting in many countries attempting to enrich natural gas with hydrogen; however, there are rising concerns over the safe use, storage, and transport of H2 due to its characteristics such as flammability, combustion, and explosivity at low concentrations (4 vol%), requiring highly sensitive and selective sensors for safety monitoring. Microfluidic-based metal-oxide-semiconducting (MOS) gas sensors are strong tools for detecting lower levels of natural gas elements; however, their working mechanism results in a lack of real-time analysis techniques to identify the exact concentration of the present gases.
View Article and Find Full Text PDFFinite element analysis is a well-established computational tool which can be used for the analysis of soft tissue mechanics. Due to the structural complexity of the leaflet tissue of the heart valve, the currently available finite element models do not adequately represent the leaflet tissue. A method of addressing this issue is to implement computationally expensive finite element models, characterized by precise constitutive models including high-order and high-density mesh techniques.
View Article and Find Full Text PDF