Publications by authors named "Emily E Wrenbeck"

It is incompletely understood how biophysical properties like protein stability impact molecular evolution and epistasis. Epistasis is defined as specific when a mutation exclusively influences the phenotypic effect of another mutation, often at physically interacting residues. In contrast, nonspecific epistasis results when a mutation is influenced by a large number of nonlocal mutations.

View Article and Find Full Text PDF

Enzymes are the ultimate entities responsible for chemical transformations in natural and engineered biosynthetic pathways. However, many natural enzymes suffer from suboptimal functional expression due to poor intrinsic protein stability. Further, stability enhancing mutations often come at the cost of impaired function.

View Article and Find Full Text PDF

Our lack of total understanding of the intricacies of how enzymes behave has constrained our ability to robustly engineer substrate specificity. Furthermore, the mechanisms of natural evolution leading to improved or novel substrate specificities are not wholly defined. Here we generate near-comprehensive single-mutation fitness landscapes comprising >96.

View Article and Find Full Text PDF

Proteins are marginally stable, and an understanding of the sequence determinants for improved protein solubility is highly desired. For enzymes, it is well known that many mutations that increase protein solubility decrease catalytic activity. These competing effects frustrate efforts to design and engineer stable, active enzymes without laborious high-throughput activity screens.

View Article and Find Full Text PDF

The advent of next-generation sequencing (NGS) has revolutionized protein science, and the development of complementary methods enabling NGS-driven protein engineering have followed. In general, these experiments address the functional consequences of thousands of protein variants in a massively parallel manner using genotype-phenotype linked high-throughput functional screens followed by DNA counting via deep sequencing. We highlight the use of information rich datasets to engineer protein molecular recognition.

View Article and Find Full Text PDF

Deep mutational scanning is a foundational tool for addressing the functional consequences of large numbers of mutants, but a more efficient and accessible method for construction of user-defined mutagenesis libraries is needed. Here we present nicking mutagenesis, a robust, single-day, one-pot saturation mutagenesis method performed on routinely prepped plasmid dsDNA. The method can be used to produce comprehensive or single- or multi-site saturation mutagenesis libraries.

View Article and Find Full Text PDF