Publications by authors named "Emily E Hurt"

Our objectives were to determine the effects of a ceramic microfiltration (MF) membrane's retentate flow channel geometry (round or diamond-shaped) and uniform transmembrane pressure (UTP) on limiting flux (LF) and serum protein (SP) removal during skim milk MF at a temperature of 50°C, a retentate protein concentration of 8.5%, and an average cross-flow velocity of 7 m·s(-1). Performance of membranes with round and diamond flow channels was compared in UTP mode.

View Article and Find Full Text PDF

The tendency of calcium to promote microfiltration (MF) membrane fouling is well documented, but the role of lactose has not been studied. Milk protein concentrate that is 85% protein on a dry basis (MPC85) contains less calcium and lactose than skim milk. Our objectives were to determine the effects of skim milk soluble calcium and lactose concentrations on the limiting fluxes (LF) and serum protein (SP) removal factors of 0.

View Article and Find Full Text PDF

The objective of the work reported in this paper was to develop a theoretical model to determine the effect of type of microfiltration (MF)-process feed, number of stages, and flux on the minimization of the MF membrane area required to produce a 95% serum protein-reduced micellar casein concentrate. The MF feed, number of stages, and flux were all factors that had an effect on the MF membrane area and should be taken into consideration when designing a MF system to produce a 95% serum protein-reduced micellar casein concentrate. Feeding the MF process with a diluted ultrafiltration retentate (DUR) diluted to the protein concentration of skim milk, as opposed to skim milk, reduced the required membrane area by 36% for a 5-stage process.

View Article and Find Full Text PDF