Publications by authors named "Emily E Devlin"

Diamond Blackfan anemia (DBA) is an inherited erythroblastopenia associated with mutations in at least 8 different ribosomal protein genes. Mutations in the gene encoding ribosomal protein S19 (RPS19) have been identified in approximately 25% of DBA families. Most of these mutations disrupt either the translation or stability of the RPS19 protein and are predicted to cause DBA by haploinsufficiency.

View Article and Find Full Text PDF

The characterization of atypical mutations in loci associated with diseases is a powerful tool to discover novel regulatory elements. We previously identified a dinucleotide deletion in the human ankyrin-1 gene (ANK-1) promoter that underlies ankyrin-deficient hereditary spherocytosis. The presence of the deletion was associated with a decrease in promoter function both in vitro and in vivo establishing it as a causative hereditary spherocytosis mutation.

View Article and Find Full Text PDF

Hereditary persistence of fetal hemoglobin (HPFH) is characterized by increased levels of Hb F during adult life. Nondeletional forms of HPFH are characterized by single base mutations in the (A)gamma and (G)gamma promoters, resulting in an increase of Hb F ranging from 3 to 20% in heterozygotes. Many point mutations in this region have been described, including the (A)gamma -195 (C>G) mutation that causes the Brazilian type of HPFH (HPFH-B).

View Article and Find Full Text PDF

The erythrocyte membrane skeleton is the best understood cytoskeleton. Because its protein components have homologs in virtually all other cells, the membrane serves as a fundamental model of biologic membranes. Modern textbooks portray the membrane as a 2-dimensional spectrin-based membrane skeleton attached to a lipid bilayer through 2 linkages: band 3-ankyrin-beta-spectrin and glycophorin C-protein 4.

View Article and Find Full Text PDF