Purpose: Claudin 18.2 (CLDN18.2) is a surface membrane protein that is crucial for maintaining tight junctions in gastric mucosal cells and is highly expressed in gastric, esophageal, and pancreatic cancers.
View Article and Find Full Text PDFProstate cancer is generally considered an immunologically "cold" tumor type that is insensitive to immunotherapy. Targeting surface antigens on tumors through cellular therapy can induce a potent antitumor immune response to "heat up" the tumor microenvironment. However, many antigens expressed on prostate tumor cells are also found on normal tissues, potentially causing on-target, off-tumor toxicities and a suboptimal therapeutic index.
View Article and Find Full Text PDFDespite recent advances in treatment, breast cancer remains the second-most common cause of cancer death among American women. A greater understanding of the molecular characteristics of breast tumors could ultimately lead to improved tumor-targeted treatment options, particularly for subsets of breast cancer patients with unmet needs. Using an unbiased genomics approach to uncover membrane-localized tumor-associated antigens (TAAs), we have identified glial cell line derived neurotrophic factor (GDNF) family receptor α 1 (GFRA1) as a breast cancer TAA.
View Article and Find Full Text PDFThe NADPH oxidase enzyme complex, NOX2, is responsible for reactive oxygen species production in neutrophils and has been recognized as a key mediator of inflammation. Here, we have performed rational design and in silico screen to identify a small molecule inhibitor, Phox-I1, targeting the interactive site of p67(phox) with Rac GTPase, which is a necessary step of the signaling leading to NOX2 activation. Phox-I1 binds to p67(phox) with a submicromolar affinity and abrogates Rac1 binding and is effective in inhibiting NOX2-mediated superoxide production dose-dependently in human and murine neutrophils without detectable toxicity.
View Article and Find Full Text PDFMutation of the p53 tumor suppressor is associated with disease progression, therapeutic resistance, and poor prognosis in patients with lymphoid malignancies and can occur in approximately 50% of Burkitt lymphomas. Thus, new therapies are needed to specifically target p53-deficient lymphomas with increased efficacy. In the current study, the specific impact of inhibition of the small GTPase Rac1 on p53-deficient B- and T-lymphoma cells was investigated.
View Article and Find Full Text PDFCancer is a highly heterogeneous disease, wherein specific determinants modulate disease severity and therapeutic outcomes. In breast cancer, significant effort has been channeled into defining critical genetic effectors of disease behavior. One key molecular determinant is the retinoblastoma tumor suppressor (RB), which is functionally inactivated in the majority of human cancers, and aberrant in nearly half of breast cancers.
View Article and Find Full Text PDFThe retinoblastoma tumor suppressor (RB) protein is functionally inactivated in the majority of human cancers and is aberrant in one-third of all breast cancers. RB regulates G(1)/S-phase cell-cycle progression and is a critical mediator of antiproliferative signaling. Here the specific impact of RB deficiency on E2F-regulated gene expression, tumorigenic proliferation, and the response to 2 distinct lines of therapy was investigated in breast cancer cells.
View Article and Find Full Text PDFSchwann cells play a critical role in peripheral nerve function. Regulated proliferation of Schwann cells is an important facet of the response to nerve injury; however, aberrant proliferation can give rise to Schwann cell tumors such as malignant peripheral nerve sheath tumors (MPNST). These tumors exhibit a range of genetic lesions that include loss of the retinoblastoma tumor suppressor (RB) pathway.
View Article and Find Full Text PDFThe liver exhibits an exquisitely controlled cell cycle, wherein hepatocytes are maintained in quiescence until stimulated to proliferate. The retinoblastoma tumor suppressor, pRB, plays a central role in proliferative control by inhibiting inappropriate cell cycle entry. In many cases, liver cancer arises due to aberrant cycles of proliferation, and correspondingly, pRB is functionally inactivated in the majority of hepatocellular carcinomas.
View Article and Find Full Text PDFThe retinoblastoma tumor suppressor (RB) is functionally inactivated in the majority of cancers and is a critical mediator of DNA damage checkpoints. Despite the critical importance of RB function in tumor suppression, the coordinate impact of RB loss on the response to environmental and therapeutic sources of damage has remained largely unexplored. Here, we utilized a conditional knockout system to ablate RB in adult fibroblasts.
View Article and Find Full Text PDFCell cycle checkpoints play a key role in maintaining genome stability by monitoring the order and integrity of cell division events. Checkpoints induced by DNA damage function to limit the propagation of potentially deleterious mutations. The retinoblastoma tumor suppressor (RB) is a critical effector of DNA damage checkpoint function by eliciting G1-phase cell cycle arrest following genotoxic stress.
View Article and Find Full Text PDFCell cycle checkpoints induced by DNA damage play an integral role in preservation of genomic stability by allowing cells to limit the propagation of deleterious mutations. The retinoblastoma tumor suppressor (RB) is crucial for the maintenance of the DNA damage checkpoint function because it elicits cell cycle arrest in response to a variety of genotoxic stresses. Although sporadic loss of RB is characteristic of most cancers and results in the bypass of the DNA damage checkpoint, the consequence of RB loss upon chemotherapeutic responsiveness has been largely uninvestigated.
View Article and Find Full Text PDF