Mac-1 exhibits a unique inhibitory activity toward IL-13-induced JAK/STAT activation and thereby regulates macrophage to foam cell transformation. However, the underlying molecular mechanism is unknown. In this study, we report the identification of IL-13Rα1, a component of the IL-13 receptor (IL-13R), as a novel ligand of integrin Mac-1, using a co-evolution-based algorithm.
View Article and Find Full Text PDFBackground: This article describes capture of biological information using a hybrid approach that combines natural language processing to extract biological entities and crowdsourcing with annotators recruited via Amazon Mechanical Turk to judge correctness of candidate biological relations. These techniques were applied to extract gene- mutation relations from biomedical abstracts with the goal of supporting production scale capture of gene-mutation-disease findings as an open source resource for personalized medicine.
Results: The hybrid system could be configured to provide good performance for gene-mutation extraction (precision ∼82%; recall ∼70% against an expert-generated gold standard) at a cost of $0.
Variations and similarities in our individual genomes are part of our history, our heritage, and our identity. Some human genomic variants are associated with common traits such as hair and eye color, while others are associated with susceptibility to disease or response to drug treatment. Identifying the human variations producing clinically relevant phenotypic changes is critical for providing accurate and personalized diagnosis, prognosis, and treatment for diseases.
View Article and Find Full Text PDFObjectives: To explore the notion of mutation-centric pharmacogenomic relation extraction and to evaluate our approach against reference pharmacogenomic relations.
Methods: From a corpus of MEDLINE abstracts relevant to genetic variation, we identify co-occurrences between drug mentions extracted using MetaMap and RxNorm, and genetic variants extracted by EMU. The recall of our approach is evaluated against reference relations curated manually in PharmGKB.
Objective: Although trait-associated genes identified as complex versus single-gene inheritance differ substantially in odds ratio, the authors nonetheless posit that their mechanistic concordance can reveal fundamental properties of the genetic architecture, allowing the automated interpretation of unique polymorphisms within a personal genome.
Materials And Methods: An analytical method, SPADE-gen, spanning three biological scales was developed to demonstrate the mechanistic concordance between Mendelian and complex inheritance of Alzheimer's disease (AD) genes: biological functions (BP), protein interaction modeling, and protein domain implicated in the disease-associated polymorphism.
Results: Among Gene Ontology (GO) biological processes (BP) enriched at a false detection rate <5% in 15 AD genes of Mendelian inheritance (Online Mendelian Inheritance in Man) and independently in those of complex inheritance (25 host genes of intragenic AD single-nucleotide polymorphisms confirmed in genome-wide association studies), 16 overlapped (empirical p=0.
Motivation: A major goal of biomedical research in personalized medicine is to find relationships between mutations and their corresponding disease phenotypes. However, most of the disease-related mutational data are currently buried in the biomedical literature in textual form and lack the necessary structure to allow easy retrieval and visualization. We introduce a high-throughput computational method for the identification of relevant disease mutations in PubMed abstracts applied to prostate (PCa) and breast cancer (BCa) mutations.
View Article and Find Full Text PDF