Prior research on evolutionary mechanisms during the origin of life has mainly assumed the existence of populations of discrete entities with information encoded in genetic polymers. Recent theoretical advances in autocatalytic chemical ecology establish a broader evolutionary framework that allows for adaptive complexification prior to the emergence of bounded individuals or genetic encoding. This framework establishes the formal equivalence of cells, ecosystems and certain localized chemical reaction systems as autocatalytic chemical ecosystems (ACEs): food-driven (open) systems that can grow due to the action of autocatalytic cycles (ACs).
View Article and Find Full Text PDFDirected microbial evolution harnesses evolutionary processes in the laboratory to construct microorganisms with enhanced or novel functional traits. Attempting to direct evolutionary processes for applied goals is fundamental to evolutionary computation, which harnesses the principles of Darwinian evolution as a general-purpose search engine for solutions to challenging computational problems. Despite their overlapping approaches, artificial selection methods from evolutionary computing are not commonly applied to living systems in the laboratory.
View Article and Find Full Text PDFBackground: Filtering facepiece respirators (FFR) are critical for protecting essential personnel and limiting the spread of disease. Due to the current COVID-19 pandemic, FFR supplies are dwindling in many health systems, necessitating re-use of potentially contaminated FFR. Multiple decontamination solutions have been developed to meet this pressing need, including systems designed for bulk decontamination of FFR using vaporous hydrogen peroxide or ultraviolet-C (UV-C) radiation.
View Article and Find Full Text PDFFine-scale evolutionary dynamics can be challenging to tease out when focused on the broad brush strokes of whole populations over long time spans. We propose a suite of diagnostic analysis techniques that operate on lineages and phylogenies in digital evolution experiments, with the aim of improving our capacity to quantitatively explore the nuances of evolutionary histories in digital evolution experiments. We present three types of lineage measurements: lineage length, mutation accumulation, and phenotypic volatility.
View Article and Find Full Text PDFBuilding more open-ended evolutionary systems can simultaneously advance our understanding of biology, artificial life, and evolutionary computation. In order to do so, however, we need a way to determine when we are moving closer to this goal. We propose a set of metrics that allow us to measure a system's ability to produce commonly-agreed-upon hallmarks of open-ended evolution: change potential, novelty potential, complexity potential, and ecological potential.
View Article and Find Full Text PDF